
1

INTEGRAL UNIVERSITY, LUCKNOW

DIRECTORATE OF DISTANCE EDUCATION

BCA-304/BCS-303 Paper Code: DBMS/B

DATABASE MANAGEMENT SYSTEM

2

DISCLAIMER: This academic material is not for sale. This academic material is not produced for any commercial benefit. We thank to all
writers, authors and publishers whose books strengthen us while preparing this material .Copy right of the content rest with the various
original content writers/authors/publishers.

3

CONTENTS

UNIT-1 INTRODUCTION TO DATABASE

MANAGEMENT SYSTEM

UNIT-2 DATA MODELING USING ENTITY-

RELATIONSHIP APPROACH STRUCTURE

UNIT-3 RELATIONAL MODEL

UNIT-4 STRUCTURE QUERY LANGUAGE

UNIT-5 RELATIONAL DATABASE DESIGN AND

NORMALIZATION

UNIT-6 QUERY PROCESSING

UNIT-7 CONCURRENCY CONTROL TECHNIQUES

UNIT-8 DATABASE RECOVERY TECHNIQUES

UNIT- 9 DISTRIBUTED DATABASES AND CLIENT-

SERVER ARCHITECTURES STRUCTURE

BIBLIOGRAPHY

4

5

INTRODUCTION TO
DBMS

NOTES

UNIT-1 INTRODUCTION TO
DBMS

Contents
 Data Processing vs. Data management System

 File Oriented Approach

 Data Redundancy and Inconsistency

 Characteristic of Database

 Advantage and Disadvantage of DBMS

 The Entity Relationship Model

 Data-Definition Language

 Data-Manipulation Language

 Data Dictionary

 DBMS Architecture

 Types of Database System

 Review & Self Assessment Question

 Further Readings

Introduction
A database-management system (DBMS) is a collection of interrelated
data and a set of programs to access those data. This is a collection of
related data with an implicit meaning and hence is a database. The
collection of data, usually referred to as the database, contains
information relevant to an enterprise. The primary goal of a DBMS is
to provide a way to store and retrieve database information that is both
convenient and efficient. By data, we mean known facts that can be
recorded and that have implicit meaning. For example, consider the
names, telephone numbers, and addresses of the people you know. You
may have recorded this data in an indexed address book, or you may
have stored it on a diskette, using a personal computer and software
such as DBASE IV or V, Microsoft ACCESS, or EXCEL. A datum – a
unit of data – is a symbol or a set of symbols which is used to represent
something. This relationship between symbols and what they represent
is the essence of what we mean by information. Hence, information is
interpreted data – data supplied with semantics. Knowledge refers to
the practical use of information. While information can be transported,
stored or shared without many difficulties the same cannot be said
about knowledge. Knowledge necessarily involves a personal

6

DATABASE MANAGEMENT
SYSTEM

experience. Referring back to the scientific experiment, a third person
reading the results will have information about it, while the person who
conducted the experiment personally will have knowledge about it.
Database systems are designed to manage large bodies of information.
Management of data involves both defining structures for storage of
information and providing mechanisms for the manipulation of
information. In addition, the database system must ensure the safety of
the information stored, despite system crashes or attempts at
unauthorized access. If data are to be shared among several users, the
system must avoid possible anomalous results.
Because information is so important in most organizations, computer
scientists have developed a large body of concepts and techniques for
managing data.
Data Processing Vs. Data Management Systems
Although Data Processing and Data Management Systems both refer to
functions that take raw data and transform it into usable information,
the usage of the terms is very different. Data Processing is the term
generally used to describe what was done by large mainframe
computers from the late 1940's until the early 1980's (and which
continues to be done in most large organizations to a greater or lesser
extent even today): large volumes of raw transaction data fed into
programs that update a master file, with fixed format reports written to
paper.
The term Data Management Systems refers to an expansion of this
concept, where the raw data, previously copied manually from paper to
punched cards, and later into data entry terminals, is now fed into the
system from a variety of sources, including ATMs, EFT, and direct
customer entry through the Internet. The master file concept has been
largely displaced by database management systems, and static
reporting replaced or augmented by ad-hoc reporting and direct
inquiry, including downloading of data by customers. The ubiquity of
the Internet and the Personal Computer have been the driving force in
the transformation of Data Processing to the more global concept of
Data Management Systems.

File Oriented Approach
The earliest business computer systems were used to process business
records and produce information. They were generally faster and more
accurate than equivalent manual systems. These systems stored groups
of records in separate files, and so they were called file processing
systems. In a typical file processing systems, each department has its
own files, designed specifically for those applications. The department

7

INTRODUCTION TO
DBMS

NOTES

itself works with the data processing staff, sets policies or standards for
the format and maintenance of its files.
Programs are dependent on the files and vice-versa; that is, when the
physical format of the file is changed, the program has also to be
changed. Although the traditional file oriented approach to information
processing is still widely used, it does have some very important
disadvantages.
 Database Oriented Approach to Data Management
Consider part of a savings-bank enterprise that keeps information
about all customers and savings accounts. One way to keep the
information on a computer is to store it in operating system files. To
allow users to manipulate the information, the system has a number of
application programs that manipulate the files, including

 A program to debit or credit an account
 A program to add a new account
 A program to find the balance of an account
 A program to generate monthly statements

System programmers wrote these application programs to meet the
needs of the bank. New application programs are added to the system
as the need arises. For example, suppose that the savings bank decides
to offer checking accounts. As a result, the bank creates new
permanent files that contain information about all the checking
accounts maintained in the bank, and it may have to write new
application programs to deal with situations that do not arise in savings
accounts, such as overdrafts. Thus, as time goes by, the system
acquires more files and more application programs.
This typical file-processing system is supported by a conventional
operating system. The system stores permanent records in various files,
and it needs different application programs to extract records from, and
add records to, the appropriate files. Before database management
systems (DBMSs) came along, organizations usually stored
information in such systems.
Keeping organizational information in a file-processing system has a
number of major disadvantages:
Data redundancy and inconsistency
Since different programmers create the files and application programs
over a long period, the various files are likely to have different formats
and the programs may be written in several programming languages.
Moreover, the same information may be duplicated in several places
(files). For example, the address and telephone number of a particular
customer may appear in a file that consists of savings-account records

8

DATABASE MANAGEMENT
SYSTEM

and in a file that consists of checking-account records. This
redundancy leads to higher storage and access cost. In addition, it may
lead to data inconsistency; that is, the various copies of the same data
may no longer agree. For example, a changed customer address may be
reflected in savings-account records but not elsewhere in the system.
Difficulty in accessing data:
Suppose that one of the bank officers needs to find out the names of all
customers who live within a particular postal-code area. The officer
asks the data-processing department to generate such a list. Because
the designers of the original system did not anticipate this request,
there is no application program on hand to meet it. There is, however,
an application program to generate the list of all customers. The bank
officer has now two choices: either obtain the list of all customers and
extract the needed information manually or ask a system programmer
to write the necessary application program. Both alternatives are
obviously unsatisfactory. Suppose that such a program is written, and
that, several days later, the same officer needs to trim that list to
include only those customers who have an account balance of $10,000
or more. As expected, a program to generate such a list does not exist.
Again, the officer has the preceding two options, neither of which is
satisfactory.
The point here is that conventional file-processing environments do not
allow needed data to be retrieved in a convenient and efficient manner.
More responsive data-retrieval systems are required for general use.
Data isolation: Because data are scattered in various files, and
files may be in different formats, writing new application programs to
retrieve the appropriate data is difficult.
Integrity problems: The data values stored in the database must
satisfy certain types of consistency constraints. For example, the
balance of a bank account may never fall below a prescribed amount
(say, $25). Developers enforce these constraints in the system by
adding appropriate code in the various application programs. However,
when new constraints are added, it is difficult to change the programs
to enforce them. The problem is compounded when constraints involve
several data items from different files.
Atomicity problems: A computer system, like any other
mechanical or electrical device, is subject to failure. In many
applications, it is crucial that, if a failure occurs, the data be restored to
the consistent state that existed prior to the failure. Consider a program
to transfer $50 from account A to account B. If a system failure occurs
during the execution of the program, it is possible that the $50 was

9

INTRODUCTION TO
DBMS

NOTES

removed from account a but was not credited to account B, resulting in
an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither
occur. That is, the funds transfer must be atomic—it must happen in its
entirety or not at all. It is difficult to ensure atomicity in a conventional
file-processing system.
Concurrent-access anomalies: For the sake of overall performance of
the system and faster response, many systems allow multiple users to
update the data simultaneously. In such an environment, interaction of
concurrent updates may result in inconsistent data. Consider bank
account A, containing $500. If two customers withdraw funds (say $50
and $100 respectively) from account A at about the same time, the
result of the concurrent executions may leave the account in an
incorrect (or inconsistent) state. Suppose that the programs executing
on behalf of each withdrawal read the old balance, reduce that value by
the amount being withdrawn, and write the result back. If the two
programs run concurrently, they may both read the value $500, and
write back $450 and $400, respectively. Depending on which one
writes the value last, the account may contain either $450 or $400,
rather than the correct value of $350. To guard against this possibility,
the system must maintain some form of supervision. But supervision is
difficult to provide because data may be accessed by many different
application programs that have not been coordinated previously.
Security problems: Not every user of the database system should be
able to access all the data. For example, in a banking system, payroll
personnel need to see only that part of the database that has
information about the various bank employees. They do not need
access to information about customer accounts. But, since application
programs are added to the system in an ad hoc manner, enforcing such
security constraints is difficult. These difficulties, among others,
prompted the development of database systems. In what follows, we
shall see the concepts and algorithms that enable database systems to
solve the problems with file-processing systems. In most of this book,
we use a bank enterprise as a running example of a typical data-
processing application found in a corporation.
Characteristics of Database
The database approach has some very characteristic features which are
discussed in detail below:
Concurrent Use
A database system allows several users to access the database
concurrently. Answering different questions from different users with

10

DATABASE MANAGEMENT
SYSTEM

the same (base) data is a central aspect of an information system. Such
concurrent use of data increases the economy of a system.
An example for concurrent use is the travel database of a bigger travel
agency. The employees of different branches can access the database
concurrently and book journeys for their clients.
Structured and Described Data
A fundamental feature of the database approach is that the database
system does not only contain the data but also the complete definition
and description of these data. These descriptions are basically details
about the extent, the structure, the type and the format of all data and,
additionally, the relationship between the data. This kind of stored data
is called metadata ("data about data").
Separation of Data and Applications
As described in the feature structured data the structure of a database is
described through metadata which is also stored in the database. An
application software does not need any knowledge about the physical
data storage like encoding, format, storage place, etc. It only
communicates with the management system f a database (DBMS) via a
standardized interface with the help of a standardised language like
SQL. The access to the data and the metadata is entirely done by the
DBMS. In this way all the applications can be totally separated from
the data. Therefore database internal re-organisations or improvement
of efficiency do not have any influence on the application software.
Data Integrity
Data integrity is a byword for the quality and the reliability of the data
of a database system. In a broader sense data integrity includes also the
protection of the database from unauthorised access (confidentiality)
and unauthorised changes. Data reflect facts of the real world.
database.
Transactions
A transaction is a bundle of actions which are done within a database
to bring it from one consistent state to a new consistent state. In
between the data are inevitable inconsistent.
A transaction is atomic what means that it cannot be divided up any
further. Within a transaction all or none of the actions need to be
carried out. Doing only a part of the actions would lead to an
inconsistent database state. One example of a transaction is the transfer
of an amount of money from one bank account to another. The debit of
the money from one account and the credit of it to another account
makes together a consistent transaction. This transaction is also atomic.
The debit or credit alone would both lead to an inconsistent state. After

11

INTRODUCTION TO
DBMS

NOTES

finishing the transaction (debit and credit) the changes to both accounts
become persistent and the one who gave the money has now less
money on his account while the receiver has now a higher balance.

Data Persistence
Data persistence means that in a DBMS all data is maintained as long
as it is not deleted explicitly. The life span of data needs to be
determined directly or indirectly be the user and must not be dependent
on system features. Additionally data once stored in a database must
not be lost. Changes of a database which are done by a transaction are
persistent. When a transaction is finished even a system crash cannot
put the data in danger.
Advantages and Disadvantages of a DBMS
Using a DBMS to manage data has many advantages:
Data independence: Application programs should be as independent
as possible from details of data representation and storage. The DBMS
can provide an abstract view of the data to insulate application code
from such details.
Efficient data access: A DBMS utilizes a variety of sophisticated
techniques to store and retrieve data efficiently. This feature is
especially important if the data is stored on external storage devices.
Data integrity and security: If data is always accessed through the
DBMS, the DBMS can enforce integrity constraints on the data. For
example, before inserting salary information for an employee, the
DBMS can check that the department budget is not exceeded. Also, the
DBMS can enforce access controls that govern what data is visible to
different classes of users.
Data administration: When several users share the data, centralizing
the administration of data can offer significant improvements.
Experienced professionals, who understand the nature of the data being
managed, and how different groups of users use it, can be responsible
for organizing the data representation to minimize redundancy and
fine-tuning the storage of the data to make retrieval efficient.
Concurrent access and crash recovery: A DBMS schedules
concurrent accesses to the data in such a manner that users can think of
the data as being accessed by only one user at a time. Further, the
DBMS protects users from the effects of system failures.
Reduced application development time: Clearly, the DBMS supports
many important functions that are common to many applications
accessing data stored in the DBMS.
This, in conjunction with the high-level interface to the data, facilitates
quick development of applications. Such applications are also likely to
be more robust than applications developed from scratch because many

12

DATABASE MANAGEMENT
SYSTEM

important tasks are handled by the DBMS instead of being
implemented by the application. Given all these advantages, is there
ever a reason not to use a DBMS? A DBMS is a complex piece of
software, optimized for certain kinds of workloads (e.g., answering
complex queries or handling many concurrent requests), and its
performance may not be adequate for certain specialized applications.
Examples include applications with tight real-time constraints or
applications with just a few well-designed critical operations for which
efficient custom code must be written. Another reason for not using a
DBMS is that an application may need to manipulate the data in ways
not supported by the query language. In such a situation, the abstract
view of the data presented by the DBMS does not match the
application's needs, and actually gets in the way. As an example,
relational databases do not support flexible analysis of text data
(although vendors are now extending their products in this direction).
If specialized performance or data manipulation requirements are
central to an application, the application may choose not to use a
DBMS, especially if the added benefits of a DBMS (e.g., flexible
querying, security, concurrent access, and crash recovery) are not
required. In most situations calling for large-scale data management,
however, DBMSs have become an indispensable tool.
Disadvantages of a DBMS
Danger of a Overkill: For small and simple applications for single
users a database system is often not advisable.
Complexity: A database system creates additional complexity and
requirements. The supply and operation of a database management
system with several users and databases is quite costly and demanding.
Qualified Personnel: The professional operation of a database system
requires appropriately trained staff. Without a qualified database
administrator nothing will work for long.
Costs: Through the use of a database system new costs are generated
for the system itself but also for additional hardware and the more
complex handling of the system.
Lower Efficiency: A database system is a multi-use software which is
often less efficient than specialized software which is produced and
optimized exactly for one problem.
 Instances and Schemas
Databases change over time as information is inserted and deleted. The
collection of information stored in the database at a particular moment
is called an instance of the database. The overall design of the database
is called the database schema. Schemas are changed infrequently, if at
all.

13

INTRODUCTION TO
DBMS

NOTES

The concept of database schemas and instances can be understood by
analogy to a program written in a programming language. A database
schema corresponds to the variable declarations (along with associated
type definitions) in a program. Each variable has a particular value at a
given instant. The values of the variables in a program at a point in
time correspond to an instance of a database schema.
Database systems have several schemas, partitioned according to the
levels of abstraction.
The physical schema describes the database design at the physical
level, while the logical schema describes the database design at the
logical level. a database may also have several schemas at the view
level, sometimes called subschemas, which describe different views of
the database.
Of these, the logical schema is by far the most important, in terms of
its effect on application programs, since programmers construct
applications by using the logical schema. The physical schema is
hidden beneath the logical schema, and can usually be changed easily
without affecting application programs. Application programs are said
to exhibit physical data independence if they do not depend on the
physical schema, and thus need not be rewritten if the physical schema
changes.
Data Models
Underlying the structure of a database is the data model: a collection of
conceptual tools for describing data, data relationships, data semantics,
and consistency constraints.
To illustrate the concept of a data model, we outline two data models
in this section: the entity-relationship model and the relational model.
Both provide a way to describe the design of a database at the logical
level.
The Entity-Relationship Model
The entity-relationship (E-R) data model is based on a perception of a
real world that consists of a collection of basic objects, called entities,
and of relationships among these objects. An entity is a “thing” or
“object” in the real world that is distinguishable from other objects. For
example, each person is an entity, and bank accounts can be considered
as entities.
Entities are described in a database by a set of attributes. For example,
the attributes account-number and balance may describe one particular
account in a bank, and they form attributes of the account entity set.
Similarly, attributes customer-name, customer street address and
customer-city may describe a customer entity.

14

DATABASE MANAGEMENT
SYSTEM

An extra attribute customer-id is used to uniquely identify customers
(since it may be possible to have two customers with the same name,
street address, and city).
A unique customer identifier must be assigned to each customer.
A relationship is an association among several entities. For example, a
depositor relationship associates a customer with each account that she
has. The set of all entities of the same type and the set of all
relationships of the same type are termed an entity set and relationship
set, respectively.
The overall logical structure (schema) of a database can be expressed
graphically by an E-R diagram.
Relational Model
The relational model uses a collection of tables to represent both data
and the relationships among those data. Each table has multiple
columns, and each column has a unique name.
The data is arranged in a relation which is visually represented in a two
dimensional table. The data is inserted into the table in the form of
tuples (which are nothing but rows). A tuple is formed by one or more
than one attributes, which are used as basic building blocks in the
formation of various expressions that are used to derive meaningful
information. There can be any number of tuples in the table, but all the
tuple contain fixed and same attributes with varying values.
The relational model is implemented in database where a relation is
represented by a table, a tuple is represented by a row, an attribute is
represented by a column of the table, attribute name is the name of the
column such as ‘identifier’, ‘name’, ‘city’ etc., and attribute value
contains the value for column in the row. Constraints are applied to the
table and form the logical schema.
In order to facilitate the selection of a particular row/tuple from the
table, the attributes i.e. column names are used, and to expedite the
selection of the rows some fields are defined uniquely to use them as
indexes, this helps in searching the required data as fast as possible. All
the relational algebra operations, such as Select, Intersection, Product,
Union, Difference, Project, Join, Division, Merge etc. can also be
performed on the Relational Database Model. Operations on the
Relational Database Model are facilitated with the help of different
conditional expressions, various key attributes, pre-defined constraints
etc.

Other Data Models
The object-oriented data model is another data model that has seen
increasing attention.

15

INTRODUCTION TO
DBMS

NOTES

The object-oriented model can be seen as extending the E-R model
with notions object-oriented data model.
The object-relational data model combines features of the object-
oriented data model and relational data model. Semi structured data
models permit the specification of data where individual data items of
the same type may have different sets of attributes.
This is in contrast with the data models mentioned earlier, where every
data item of a particular type must have the same set of attributes. The
extensible markup language (XML) is widely used to represent semi
structured data.
Historically, two other data models, the network data model and the
hierarchical data model, preceded the relational data model. These
models were tied closely to the underlying implementation, and
complicated the task of modeling data. As a result they are little used
now, except in old database code that is still in service in some places.
They are outlined in Appendices A and B, for interested readers.

Database Languages
A database system provides a data definition language to specify the
database schema and a data manipulation language to express database
queries and updates. In practice, the data definition and data
manipulation languages are not two separate languages; instead they
simply form parts of a single database language, such as the widely
used SQL language.
Data-Definition Language
We specify a database schema by a set of definitions expressed by a
special language called a data-definition language (DDL).
For instance, the following statement in the SQL language defines the
account table:
 Create table account (account-number char (10), balance integer)
 Execution of the above DDL statement creates the account table. In
addition, it updates a special set of tables called the data dictionary or
data directory.
A data dictionary contains metadata—that is, data about data. The
schema of a table is an example of metadata. A database system
consults the data dictionary before reading or modifying actual data.
We specify the storage structure and access methods used by the
database system by a set of statements in a special type of DDL called
a data storage and definition language. These statements define the
implementation details of the database schemas, which are usually
hidden from the users. The data values stored in the database must
satisfy certain consistency constraints.

16

DATABASE MANAGEMENT
SYSTEM

For example, suppose the balance on an account should not fall below
$100. The DDL provides facilities to specify such constraints. The
database systems check these constraints every time the database is
updated.
Data-Manipulation Language
Data manipulation is

 The retrieval of information stored in the database
 The insertion of new information into the database
 The deletion of information from the database
 The modification of information stored in the database

A data-manipulation language (DML) is a language that enables users
to access or manipulate data as organized by the appropriate data
model. There are basically two types:
Procedural DMLs require a user to specify what data are needed and
how to get those data.
Declarative DMLs (also referred to as nonprocedural DMLs) require a
user to specify what data are needed without specifying how to get
those data.
Declarative DMLs are usually easier to learn and use than are
procedural DMLs.
However, since a user does not have to specify how to get the data, the
database system has to figure out an efficient means of accessing data.
The DML component of the SQL language is nonprocedural.
A query is a statement requesting the retrieval of information. The
portion of a DML that involves information retrieval is called a query
language. Although technically incorrect, it is common practice to use
the terms query language and data manipulation language
synonymously.
This query in the SQL language finds the name of the customer whose
customer-id is 192-83-7465:
Select customer.customer-name from customer where
customer.customer-id = 192-83-7465
The query specifies that those rows from the table customer where the
customer-id is 192-83-7465 must be retrieved, and the customer-name
attribute of these rows must be displayed.
Queries may involve information from more than one table. For
instance, the following query finds the balance of all accounts owned
by the customer with customerid 192-83- select account.balance from
depositor, account where depositor.customer-id = 192-83-7465 and
depositor.account-number = account.account-number.

17

INTRODUCTION TO
DBMS

NOTES

There are a number of database query languages in use, either
commercially or experimentally.
The levels of abstraction apply not only to defining or structuring data,
but also to manipulating data. At the physical level, we must define
algorithms that allow efficient access to data. At higher levels of
abstraction, we emphasize ease of use. The goal is to allow humans to
interact efficiently with the system. The query processor component of
the database system translates DML queries into sequences of actions
at the physical level of the database system.

Data Dictionary
We can define a data dictionary as a DBMS component that stores the
definition of data characteristics and relationships. You may recall that
such “data about data” were labeled metadata. The DBMS data
dictionary provides the DBMS with its self describing characteristic. In
effect, the data dictionary resembles and X-ray of the company’s entire
data set, and is a crucial element in the data administration function.
The two main types of data dictionary exist, integrated and stand alone.
An integrated data dictionary is included with the DBMS. For
example, all relational DBMSs include a built in data dictionary or
system catalog that is frequently accessed and updated by the RDBMS.
Other DBMSs especially older types, do not have a built in data
dictionary instead the DBA may use third party stand alone data
dictionary systems.
Data dictionaries can also be classified as active or passive. An active
data dictionary is automatically updated by the DBMS with every
database access, thereby keeping its access information up-to-date. A
passive data dictionary is not updated automatically and usually
requires a batch process to be run. Data dictionary access information
is normally used by the DBMS for query optimization purpose.
The data dictionary’s main function is to store the description of all
objects that interact with the database. Integrated data dictionaries tend
to limit their metadata to the data managed by the DBMS. Stand alone
data dictionary systems are more usually more flexible and allow the
DBA to describe and manage all the organization’s data, whether or
not they are computerized. Whatever the data dictionary’s format, its
existence provides database designers and end users with a much
improved ability to communicate.
In addition, the data dictionary is the tool that helps the DBA to resolve
data conflicts. Although, there is no standard format for the
information stored in the data dictionary several features are common.
For example, the data dictionary typically stores descriptions of all:

18

DATABASE MANAGEMENT
SYSTEM

• Data elements that are define in all tables of all databases.
Specifically the data dictionary stores the name, data types, display
formats, internal storage formats, and validation rules. The data
dictionary tells where an element is used, by whom it is used and so
on.
• Tables define in all databases. For example, the data dictionary is
likely to store the name of the table creator, the date of creation access
authorizations, the number of columns, and so on.
• Indexes define for each database tables. For each index the DBMS
stores at least the index name the attributes used, the location, specific
index characteristics and the creation date.
• Define databases: who created each database, the date of creation
where the database is located, who the DBA is and so on.
• End users and The Administrators of the data base
• Programs that access the database including screen formats, report
formats application formats, SQL queries and so on.
• Access authorization for all users of all databases.
• Relationships among data elements which elements are involved:
whether the relationships are mandatory or optional, the connectivity
and cardinality and so on.
If the data dictionary can be organized to include data external to the
DBMS itself, it becomes an especially flexible to for more general
corporate resource management. The management of such an extensive
data dictionary, thus, makes it possible to manage the use and
allocation of all of the organization information regardless whether it
has its roots in the database data. This is why some managers consider
the data dictionary to be the key element of the information resource
management function. And this is also why the data dictionary might
be described as the information resource dictionary.
The metadata stored in the data dictionary is often the bases for
monitoring the database use and assignment of access rights to the
database users. The information stored in the database is usually based
on the relational table format, thus, enabling the DBA to query the
database with SQL command. For example, SQL command can be
used to extract information about the users of the specific table or
about the access rights of a particular user.
Database Administrators and Database Users
A primary goal of a database system is to retrieve information from
and store new information in the database. People who work with a
database can be categorized as database users or database
administrators.

19

INTRODUCTION TO
DBMS

NOTES

Database Users and User Interfaces
There are four different types of database-system users, differentiated
by the way they expect to interact with the system. Different types of
user interfaces have been designed for the different types of users.
Naive users are unsophisticated users who interact with the system by
invoking one of the application programs that have been written
previously. For example, a bank teller who needs to transfer $50 from
account A to account B invokes a program called transfer.
This program asks the teller for the amount of money to be transferred,
the account from which the money is to be transferred, and the account
to which the money is to be transferred.
As another example, consider a user who wishes to find her account
balance over the World Wide Web. Such a user may access a form,
where she enters her account number. An application program at the
Web server then retrieves the account balance, using the given account
number, and passes this information back to the user. The typical user
interface for naive users is a forms interface, where the user can fill in
appropriate fields of the form. Naive users may also simply read
reports generated from the database.
Application programmers are computer professionals who write
application programs. Application programmers can choose from many
tools to develop user interfaces. Rapid application development (RAD)
tools are tools that enable an application programmer to construct
forms and reports without writing a program. There are also special
types of programming languages that combine imperative control
structures (for example, for loops, while loops and if-then-else
statements) with statements of the data manipulation language.
These languages, sometimes called fourth-generation languages, often
include special features to facilitate the generation of forms and the
display of data on the screen. Most major commercial database
systems include a fourth generation language.
Sophisticated users interact with the system without writing programs.
Instead, they form their requests in a database query language. They
submit each such query to a query processor, whose function is to
break down DML statements into instructions that the storage manager
understands. Analysts who submit queries to explore data in the
database fall in this category.
Online analytical processing (OLAP) tools simplify analysts’ tasks by
letting them view summaries of data in different ways. For instance, an
analyst can see total sales by region (for example, North, South, East,
and West), or by product, or by a combination of region and product
(that is, total sales of each product in each region). The tools also

20

DATABASE MANAGEMENT
SYSTEM

permit the analyst to select specific regions, look at data in more detail
(for example, sales by city within a region) or look at the data in less
detail (for example, aggregate products together by category).
Another class of tools for analysts is data mining tools, which help
them find certain kinds of patterns in data.
Specialized users are sophisticated users who write specialized
database applications that do not fit into the traditional data-processing
framework.
Among these applications are computer-aided design systems,
knowledge base and expert systems, systems that store data with
complex data types (for example, graphics data and audio data), and
environment-modeling systems.
Database Administrator
One of the main reasons for using DBMSs is to have central control of
both the data and the programs that access those data. A person who
has such central control over the system is called a database
administrator (DBA). The functions of a DBA include:
Schema definition: The DBA creates the original database schema by
executing a set of data definition statements in the DDL.
Storage structure and access-method definition:
Schema and physical-organization modification: The DBA carries
out changes to the schema and physical organization to reflect the
changing needs of the organization, or to alter the physical
organization to improve performance.
Granting of authorization for data access: By granting different
types of authorization, the database administrator can regulate which
parts of the database various users can access. The authorization
information is kept in a special system structure that the database
system consults whenever someone attempts to access the data in the
system.
Routine maintenance: Examples of the database administrator’s
routine maintenance activities are:
Periodically backing up the database, either onto tapes or onto remote
servers, to prevent loss of data in case of disasters such as flooding.
Ensuring that enough free disk space is available for normal
operations, and upgrading disk space as required.
Monitoring jobs running on the database and ensuring that
performance is not degraded by very expensive tasks submitted by
some users.

21

INTRODUCTION TO
DBMS

NOTES

DBMS Architecture and Data Independence
Three important characteristics of the database approach are (1)
insulation of programs and data (program-data and program-operation
independence); (2) support of multiple user views; and (3) use of a
catalog to store the database description (schema). In this section we
specify an architecture for database systems, called the three-schema
architecture, which was proposed to help achieve and visualize these
characteristics. We then discuss the concept of data independence.
The Three-Schema Architecture
The goal of the three-schema architecture, illustrated in Figure 1.1, is
to separate the user applications and the physical database. In this
architecture, schemas can be defined at the following three levels:
1. The internal level has an internal schema, which describes the
physical storage structure of the database. The internal schema uses a
physical data model and describes the complete details of data storage
and access paths for the database.
2. The conceptual level has a conceptual schema, which describes the
structure of the whole database for a community of users. The
conceptual schema hides the details of physical storage structures and
concentrates on describing entities, data types, relationships, user
operations, and constraints. A high-level data model or an
implementation data model can be used at this level.
3. The external or view level includes a number of external schemas or
user views. Each external schema describes the part of the database
that a particular user group is interested in and hides the rest of the
database from that user group. A high-level data model or an
implementation data model can be used at this level.

Figure 1.1 The Three Schema Architecture
The three-schema architecture is a convenient tool for the user to
visualize the schema levels in a database system. Most DBMSs do not
separate the three levels completely, but support the three-schema
architecture to some extent. Some DBMSs may include physical-level
details in the conceptual schema. In most DBMSs that support user

22

DATABASE MANAGEMENT
SYSTEM

views, external schemas are specified in the same data model that
describes the conceptual-level information. Some DBMSs allow
different data models to be used at the conceptual and external levels.
Notice that the three schemas are only descriptions of data; the only
data that actually exists is at the physical level. In a DBMS based on
the three-schema architecture, each user group refers only to its own
external schema. Hence, the DBMS must transform a request specified
on an external schema into a request against the conceptual schema,
and then into a request on the internal schema for processing over the
stored database. If the request is database retrieval, the data extracted
from the stored database must be reformatted to match the user’s
external view.
The processes of transforming requests and results between levels are
called mappings. These mappings may be time consuming, so some
DBMSs—especially those that are meant to support small databases—
do not support external views. Even in such systems, however, a
certain amount of mapping is necessary to transform requests between
the conceptual and internal levels.
Data Independence
The three-schema architecture can be used to explain the concept of
data independence, which can be defined as the capacity to change the
schema at one level of a database system without having to change the
schema at the next higher level. We can define two types of data
independence:
1. Logical data independence is the capacity to change the conceptual
schema without having to change external schemas or application
programs. We may change the conceptual schema to expand the
database (by adding a record type or data item), or to reduce the
database (by removing a record type or data item). In the latter case,
external schemas that refer only to the remaining data should not be
affected. Only the view definition and the mappings need be changed
in a DBMS that supports logical data independence. Application
programs that reference the external schema constructs must work as
before, after the conceptual schema undergoes a logical reorganization.
Changes to constraints can be applied also to the conceptual schema
without affecting the external schemas or application programs.
2. Physical data independence is the capacity to change the internal
schema without having to change the conceptual (or external) schemas.
Changes to the internal schema may be needed because some physical
files had to be reorganized—for example, by creating additional access
structures—to improve the performance of retrieval or update. If the

23

INTRODUCTION TO
DBMS

NOTES

same data as before remains in the database, we should not have to
change the conceptual schema.
Whenever we have a multiple-level DBMS, its catalog must be
expanded to include information on how to map requests and data
among the various levels. The DBMS uses additional software to
accomplish these mappings by referring to the mapping information in
the catalog. Data independence is accomplished because, when the
schema is changed at some level, the schema at the next higher level
remains unchanged; only the mapping between the two levels is
changed. Hence, application programs referring to the higher-level
schema need not be changed.
The three-schema architecture can make it easier to achieve true data
independence, both physical and logical. However, the two levels of
mappings create an overhead during compilation or execution of a
query or program, leading to inefficiencies in the DBMS. Because of
this, few DBMSs have implemented the full three-schema architecture.

Types of Database System
Several criteria are normally used to classify DBMSs. The first is the
data model on which the DBMS is based. The main data model used in
many current commercial DBMSs is the relational data model. The
object data model was implemented in some commercial systems but
has not had widespread use. Many legacy (older) applications still run
on database systems based on the hierarchical and network data
models. The relational DBMSs are evolving continuously, and, in
particular, have been incorporating many of the concepts that were
developed in object databases. This has led to a new class of DBMSs
called object-relational DBMSs. We can hence categorize DBMSs
based on the data model: relational, object, object-relational,
hierarchical, network, and other.
The second criterion used to classify DBMSs is the number of users
supported by the system. Single-user systems support only one user at
a time and are mostly used with personal computers. Multiuser
systems, which include the majority of DBMSs, support multiple users
concurrently. A third criterion is the number of sites over which the
database is distributed. A DBMS is centralized if the data is stored at a
single computer site. A centralized DBMS can support multiple users,
but the DBMS and the database themselves reside totally at a single
computer site. A distributed DBMS (DDBMS) can have the actual
database and DBMS software distributed over many sites, connected
by a computer network. Homogeneous DDBMSs use the same DBMS
software at multiple sites. A recent trend is to develop software to
access several autonomous preexisting databases stored under

24

DATABASE MANAGEMENT
SYSTEM

heterogeneous llBMSs. This leads to a federated DBMS (or multi-
database system), in which the participating DBMSs are loosely
coupled and have a degree of local autonomy. Many DBMSs use
client-server architecture.
Review & Self Assessment Question

1. Why would you choose a database system instead of simply
storing data in operating system files? When would it make
sense not to use a database system?

2. What is logical data independence and why is it important?
3. Explain the difference between logical and physical data

independence.
4. Explain the difference between external, internal, and conceptual

schemas. How are these different schema layers related to the
concepts of logical and physical data independence?

5. What are the responsibilities of a DBA?

Further Readings
Database Management system by Korth
Database Management system by Navathe
Database Management system by P G Gill
Database Management system by A Leon

25

DATA MODELING USING
ENTITY RELATIONSHIP

APPROACH & STRUCTURE

NOTES

UNIT-2 DATA
MODELING USING ENTITY
RELATIONSHIP APPROACH

& STRUCTURE
Contents
 Methodology

 Components of a Data model

 Basic constructs of E-R Modeling

 Degree of Relationship

 Generalization of Hierarchy

 Data Modeling as Part of Database Design

 Naming Data Objects

 Review & Self Assessment Question

 Further Readings

Introduction
A data model is a conceptual representation of the data structures that
are required by a database. The data structures include the data objects,
the associations between data objects, and the rules which govern
operations on the objects. As the name implies, the data model focuses
on what data is required and how it should be organized rather than
what operations will be performed on the data. To use a common
analogy, the data model is equivalent to an architect's building plans.
A data model is independent of hardware or software constraints.
Rather than try to represent the data as a database would see it, the data
model focuses on representing the data as the user sees it in the "real
world". It serves as a bridge between the concepts that make up real-
world events and processes and the physical representation of those
concepts in a database.
Methodology
There are two major methodologies used to create a data model: the
Entity-Relationship (ER) approach and the Object Model. This
document uses the Entity-Relationship approach.
Data Modeling in the Context of Database Design
Database design is defined as: "design the logical and physical structure
of one or more databases to accommodate the information needs of the
users in an organization for a defined set of applications". The design
process roughly follows five steps:
1. Planning and analysis

26

DATABASE MANAGEMENT
SYSTEM

2. Conceptual design
3. Logical design
4. Physical design
5. Implementation
The data model is one part of the conceptual design process. The other,
typically is the functional model. The data model focuses on what data
should be stored in the database while the functional model deals with
how the data is processed. To put this in the context of the relational
database, the data model is used to design the relational tables.
The functional model is used to design the queries which will access
and perform operations on those tables.
Components of a Data Model
The data model gets its inputs from the planning and analysis stage.
Here the modeler, along with analysts, collects information about the
requirements of the database by reviewing existing documentation and
interviewing end-users.
The data model has two outputs. The first is an entity-relationship
diagram which represents the data structures in a pictorial form.
Because the diagram is easily learned, it is valuable tool to
communicate the model to the end-user. The second component is a
data document. This a document that describes in detail the data
objects, relationships, and rules required by the database. The
dictionary provides the detail required by the database developer to
construct the physical database.
Data Modeling
Data modeling is probably the most labor intensive and time consuming
part of the development process. Why bother especially if you are
pressed for time? A common response by practitioners who write on the
subject is that you should no more build a database without a model
than you should build a house without blueprints.
The goal of the data model is to make sure that the all data objects
required by the database are completely and accurately represented.
Because the data model uses easily understood notations and natural
language, it can be reviewed and verified as correct by the end-users.
The data model is also detailed enough to be used by the database
developers to use as a "blueprint" for building the physical database.
The information contained in the data model will be used to define the
relational tables, primary and foreign keys, stored procedures, and
triggers. A poorly designed database will require more time in the long-
term. Without careful planning you may create a database that omits
data required to create critical reports, produces results that are
incorrect or inconsistent, and is unable to accommodate changes in the
user's requirements.
The Entity-Relationship Model
The Entity-Relationship (ER) model was originally proposed by Peter
in 1976 as a way to unify the network and relational database views.
Simply stated the ER model is a conceptual data model that views the
real world as entities and relationships. A basic component of the

27

DATA MODELING USING
ENTITY RELATIONSHIP

APPROACH & STRUCTURE

NOTES

model is the Entity-Relationship diagram which is used to visually
represent data objects. Since Chen wrote his paper the model has been
extended and today it is commonly used for database design for the
database designer, the utility of the ER model is:
It maps well to the relational model. The constructs used in the ER
model can easily be transformed into relational tables.
It is simple and easy to understand with a minimum of training.
Therefore, the model can be used by the database designer to
communicate the design to the end user.
In addition, the model can be used as a design plan by the database
developer to implement a data model in a specific database
management software.
Basic Constructs of E-R Modeling
The ER model views the real world as a construct of entities and
association between entities.
Entities
Entities are the principal data object about which information is to be
collected. Entities are usually recognizable concepts, either concrete or
abstract, such as person, places, things, or events which have relevance
to the database. Some specific examples of entities are EMPLOYEES,
PROJECTS, INVOICES. An entity is analogous to a table in the
relational model.
Entities are classified as independent or dependent (in some
methodologies, the terms used are strong and weak, respectively). An
independent entity is one that does not rely on another for
identification. A dependent entity is one that relies on another for
identification.
An entity occurrence (also called an instance) is an individual
occurrence of an entity. An occurrence is analogous to a row in the
relational table.
Special Entity Types
Associative entities (also known as intersection entities) are entities
used to associate two or more entities in order to reconcile a many-to-
many relationship. Subtypes entities are used in generalization
hierarchies to represent a subset of instances of their parent entity,
called the super type, but which have attributes or relationships that
apply only to the subset.
Associative entities and generalization hierarchies are discussed in
more detail below.
Relationships
A Relationship represents an association between two or more entities.
An example of a relationship would be:
Employees are assigned to projects
Projects have subtasks
Departments manage one or more projects
Relationships are classified in terms of degree, connectivity,
cardinality, and existence.

28

DATABASE MANAGEMENT
SYSTEM

These concepts will be discussed below.
Attributes
Attributes describe the entity of which they are associated. A particular
instance of an attribute is a value. For example, "Jane R. Hathaway" is
one value of the attribute Name.
The domain of an attribute is the collection of all possible values an
attribute can have.
The domain of Name is a character string.
Attributes can be classified as identifiers or descriptors. Identifiers,
more commonly called keys, uniquely identify an instance of an entity.
A descriptor describes a non-unique characteristic of an entity instance.
Classifying Relationships
Relationships are classified by their degree, connectivity, cardinality,
direction, type, and existence. Not all modeling methodologies use all
these classifications.
Degree of a Relationship
The degree of a relationship is the number of entities associated with
the relationship. The n-ary relationship is the general form for degree n.
Special cases are the binary, and ternary, where the degree is 2, and 3,
respectively.
Binary relationships, the association between two entities is the most
common type in the real world. A recursive binary relationship occurs
when an entity is related to itself. An example might be "some
employees are married to other employees".
A ternary relationship involves three entities and is used when a binary
relationship is inadequate. Many modeling approaches recognize only
binary relationships. Ternary or n-ary relationships are decomposed
into two or more binary relationships.
Connectivity and Cardinality The connectivity of a relationship
describes the mapping of associated entity instances in the relationship.
The values of connectivity are "one" or "many".
The cardinality of a relationship is the actual number of related
occurrences for each of the two entities. The basic types of connectivity
for relations are: one-to-one, one-to- many, and many-to-many.
A one-to-one (1:1)
Relationship is when at most one instance of a entity A is associated
with one instance of entity B. For example, "employees in the company
are each assigned their own office. For each employee there exists a
unique office and for each office there exists a unique employee.
A one-to-many (1: N)
Relationships is when for one instance of entity A, there are zero, one,
or many instances of entity B, but for one instance of entity B, there is
only one instance of entity A. An example of a 1: N relationships is
A department has many employees
Each employee is assigned to one department

29

DATA MODELING USING
ENTITY RELATIONSHIP

APPROACH & STRUCTURE

NOTES

A many-to-Many (M: N)
Relationship, sometimes called non-specific, is when for one instance
of entity A, there are zero, one, or many instances of entity B and for
one instance of entity B there are zero, one, or many instances of entity
A. An example is: employees can be assigned to no more than two
projects at the same time projects must have assigned at least three
employees
A single employee can be assigned to many projects; conversely, a
single project can have assigned to it many employee. Here the
cardinality for the relationship between employees and projects is two
and the cardinality between project and employee is three.
Many-to-many relationships cannot be directly translated to relational
tables but instead must be transformed into two or more one-to-many
relationships using associative entities.
Direction
The direction of a relationship indicates the originating entity of a
binary relationship. The entity from which a relationship originates is
the parent entity; the entity where the relationship terminates is the
child entity.
The direction of a relationship is determined by its connectivity. In a
one-to-one relationship the direction is from the independent entity to a
dependent entity. If both entities are independent, the direction is
arbitrary. With one-to-many relationships, the entity occurring once is
the parent. The direction of many-to-many relationships is arbitrary.
Type
An identifying relationship is one in which one of the child entities is
also a dependent entity. A non-identifying relationship is one in which
both entities are independent.
Existence
Existence denotes whether the existence of an entity instance is
dependent upon the existence of another, related, entity instance. The
existence of an entity in a relationship is defined as either mandatory or
optional. If an instance of an entity must always occur for an entity to
be included in a relationship, then it is mandatory. An example of
mandatory existence is the statement "every project must be managed
by a single department". If the instance of the entity is not required, it is
optional. An example of optional existence is the statement, "employees
may be assigned to work on projects".
Generalization Hierarchies
A generalization hierarchy is a form of abstraction that specifies that
two or more entities that share common attributes can be generalized
into a higher level entity type called a super type or generic entity. The
lower-level of entities become the subtype, or categories, to the super
type. Subtypes are dependent entities.
Generalization occurs when two or more entities represent categories of
the same real world object. For example, Wages_Employees and
Classified_Employees represent categories of the same entity,

30

DATABASE MANAGEMENT
SYSTEM

Employees. In this example, Employees would be the super type;
Wages_Employees and Classified_Employees would be the subtypes.
Subtypes can be either mutually exclusive (disjoint) or overlapping
(inclusive). A mutually exclusive category is when an entity instance
can be in only one category. The above example is a mutually exclusive
category. An employee can either be wages or classified but not both.
An overlapping category is when an entity instance may be in two or
more subtypes. An example would be a person who works for a
university could also be a student at that same university. The
completeness constraint requires that all instances of the subtype be
represented in the super type. Generalization hierarchies can be nested.
That is, a subtype of one hierarchy can be a super type of another. The
level of nesting is limited only by the constraint of simplicity. Subtype
entities may be the parent entity in a relationship but not the child.
ER Notation
There is no standard for representing data objects in ER diagrams. Each
modeling methodology uses its own notation. All notational styles
represent entities as rectangular boxes and relationships as lines
connecting boxes. Each style uses a special set of symbols to represent
the cardinality of a connection. The notation used in this document is
from Martin.
The symbols used for the basic ER constructs are:
• Entities are represented by labeled rectangles. The label is the name of
the entity. Entity names should be singular nouns.
• Relationships are represented by a solid line connecting two entities.
The name of the relationship is written above the line. Relationship
names should be verbs.
• Attributes, when included, are listed inside the entity rectangle.
Attributes which are identifiers are underlined. Attribute names should
be singular nouns.
• Cardinality of many is represented by a line ending in a crow's foot. If
the crow's foot is omitted, the cardinality is one.
• Existence is represented by placing a circle or a perpendicular bar on
the line. Mandatory existence is shown by the bar (looks like a 1) next
to the entity for an instance is required. Optional existence is shown by
placing a circle next to the entity that is optional.
Examples of these symbols are shown in Figure 2.1 below:

 Figure 2.1 ER Notation

31

DATA MODELING USING
ENTITY RELATIONSHIP

APPROACH & STRUCTURE

NOTES

Data Modeling as Part of Database Design
The data model is one part of the conceptual design process. The other
is the function model. The data model focuses on what data should be
stored in the database while the function model deals with how the data
is processed. To put this in the context of the relational database, the
data model is used to design the relational tables. The functional model
is used to design the queries that will access and perform operations on
those tables.
Data modeling is preceded by planning and analysis. The effort devoted
to this stage is proportional to the scope of the database. The planning
and analysis of a database intended to serve the needs of an enterprise
will require more effort than one intended to serve a small workgroup.
The information needed to build a data model is gathered during the
requirements analysis.
Although not formally considered part of the data modeling stage by
some methodologies, in reality the requirements analysis and the ER
diagramming part of the data model are done at the same time.
Requirements Analysis
The goals of the requirements analysis are:
• To determine the data requirements of the database in terms of
primitive objects
• To classify and describe the information about these objects
• To identify and classify the relationships among the objects
• To determine the types of transactions that will be executed on the
database and the interactions between the data and the transactions
• To identify rules governing the integrity of the data
The modeler, or modelers, works with the end users of an organization
to determine the data requirements of the database. Information needed
for the requirements analysis can be gathered in several ways:
Review of existing documents - such documents include existing forms
and reports, written guidelines, job descriptions, personal narratives,
and memoranda. Paper documentation is a good way to become
familiar with the organization or activity you need to model.
Interviews with end users - these can be a combination of individual or
group meetings. Try to keep group sessions to under five or six people.
If possible, try to have everyone with the same function in one meeting.
Use a blackboard, flip charts, or overhead transparencies to record
information gathered from the interviews.
Review of existing automated systems - if the organization already has
an automated system, review the system design specifications and
documentation. The requirements analysis is usually done at the same
time as the data modeling. As information is collected, data objects are
identified and classified as either entities, attributes, or relationship;
assigned names; and, defined using terms familiar to the end users.
The objects are then modeled and analysed using an ER diagram. The
diagram can be reviewed by the modeler and the end-users to determine
its completeness and accuracy. If the model is not correct, it is
modified, which sometimes requires additional information to be

32

DATABASE MANAGEMENT
SYSTEM

collected. The review and edit cycle continues until the model is
certified as correct.
Three points to keep in mind during the requirements analysis are:
1. Talk to the end users about their data in "real-world" terms. Users do
not think in terms of entities, attributes, and relationships but about the
actual people, things, and activities they deal with daily.
2. Take the time to learn the basics about the organization and its
activities that you want to model. Having an understanding about the
processes will make it easier to build the model.
3. End-users typically think about and view data in different ways
according to their function within an organization. Therefore, it is
important to interview the largest number of people that time permits.
Steps in Building the Data Model
While ER model lists and defines the constructs required to build a data
model, there is no standard process for doing so. Some methodologies,
such as IDEFIX, specify a bottom-up development process were the
model is built in stages. Typically, the entities and relationships are
modeled first, followed by key attributes, and then the model is finished
by adding non-key attributes. Other experts argue that in practice, using
a phased approach is impractical because it requires too many meetings
with the end-users.
The sequence used for this document are:

1. Identification of data objects and relationships
2. Drafting the initial ER diagram with entities and relationships
3. Refining the ER diagram
4. Add key attributes to the diagram
5. Adding non-key attributes
6. Diagramming Generalization Hierarchies
7. Validating the model through normalization
8. Adding business and integrity rules to the Model

In practice, model building is not a strict linear process. As noted
above, the requirements analysis and the draft of the initial ER diagram
often occur simultaneously. Refining and validating the diagram may
uncover problems or missing information which require more
information gathering and analysis
Identifying Data Objects and Relationships
In order to begin constructing the basic model, the modeler must
analyze the information gathered during the requirements analysis for
the purpose of:

• Classifying data objects as either entities or attributes
• Identifying and defining relationships between entities
• Naming and defining identified entities, attributes, and
relationships
• Documenting this information in the data document

To accomplish these goals the modeler must analyze narratives from
users, notes from meeting, policy and procedure documents, and, if
lucky, design documents from the current information system.

33

DATA MODELING USING
ENTITY RELATIONSHIP

APPROACH & STRUCTURE

NOTES

Although it is easy to define the basic constructs of the ER model, it is
not an easy task to distinguish their roles in building the data model.
What makes an object an entity or attribute. For example, given the
statement "employees work on projects". Should employees be
classified as an entity or attribute? Very often, the correct answer
depends upon the requirements of the database. In some cases,
employee would be an entity, in some it would be an attribute.
While the definitions of the constructs in the ER Model are simple, the
model does not address the fundamental issue of how to identify them.
Some commonly given guidelines are:

• Entities contain descriptive information
• Attributes either identify or describe entities
• Relationships are associations between entities

These guidelines are discussed in more detail below.
• Entities
• Attributes

o Validating Attributes
o Derived Attributes and Code Values

• Relationships
• Naming Data Objects
• Object Definition
• Recording Information in Design Document

Entities
There are various definitions of an entity:
"Any distinguishable person, place, thing, event, or concept, about
which information is kept"
"A thing which can be distinctly identified"
"Any distinguishable object that is to be represented in a database"
"...anything about which we store information (e.g. supplier, machine
tool, employee, utility pole, airline seat, etc.). For each entity type,
certain attributes are stored".
These definitions contain common themes about entities:

o An entity is a "thing", "concept" or, object". However, entities
can sometimes represent the relationships between two or more
objects. This type of entity is known as an associative entity.
o Entities are objects which contain descriptive information. If
an data object you have identified is described by other objects,
then it is an entity. If there is no descriptive information
associated with the item, it is not an entity. Whether or not a
data object is an entity may depend upon the organization or
activity being modeled.
o An entity represents many things which share properties. They
are not single things. For example, King Lear and Hamlet are
both plays which share common attributes such as name, author,
and cast of characters. The entity describing these things would
be PLAY, with King Lear and Hamlet being instances of the
entity.

34

DATABASE MANAGEMENT
SYSTEM

o Entities which share common properties are candidates for
being converted to generalization hierarchies (See below)
o Entities should not be used to distinguish between time
periods. For example, the entities 1st Quarter Profits, 2nd
Quarter Profits, etc. should be collapsed into a single entity
called Profits. An attribute specifying the time period would be
used to categorize by time
o Not everything the users want to collect information about
will be an entity. A complex concept may require more than one
entity to represent it. Others "things" users think important may
not be entities.

Attributes
Attributes are data objects that either identify or describe entities.
Attributes that identify entities are called key attributes. Attributes that
describe an entity are called non-key attributes.
The process for identifying attributes is similar except now you want to
look for and extract those names that appear to be descriptive noun
phrases.
Validating Attributes
Attribute values should be atomic, that is, present a single fact. Having
disaggregated data allows simpler programming, greater reusability of
data, and easier implementation of changes. Normalization also
depends upon the "single fact" rule being followed.
Common types of violations include:

o Simple aggregation - a common example is Person Name
which concatenates first name, middle initial, and last name.
Another is Address which concatenates, street address, city, and
zip code. When dealing with such attributes, you need to find
out if there are good reasons for decomposing them. For
example, do the end- users want to use the person's first name in
a form letter.
o Complex codes - these are attributes whose values are codes
of concatenated pieces of information. An example is the code
attached to automobiles and trucks. The code represents over 10
different pieces of information about the vehicle. Unless part of
an industry standard, these codes have no meaning to the end
user. They are very difficult to process and update.
o Text blocks - these are free-form text fields. While they have a
legitimate use, an over reliance on them may indicate that some
data requirements are not met by the model.
o Mixed domains - this is where a value of an attribute can have
different meaning under different conditions.

Derived Attributes and Code Values
Two areas where data modeling experts disagree is whether derived
attributes and attributes whose values are codes should be permitted in
the data model.
Derived attributes are those created by a formula or by a summary
operation on other attributes. Arguments against including derived data

35

DATA MODELING USING
ENTITY RELATIONSHIP

APPROACH & STRUCTURE

NOTES

are based on the premise that derived data should not be stored in a
database and therefore should not be included in the data model. The
arguments in favor are:

o Derived data is often important to both managers and users
and therefore should be included in the data model
o It is just as important, perhaps more so, to document derived
attributes just as you would other attributes
o Including derived attributes in the data model does not imply
how they will be implemented

A coded value uses one or more letters or numbers to represent a fact.
For example, the value Gender might use the letters "M" and "F" as
values rather than "Male" and "Female". Those who are against this
practice cite that codes have no intuitive meaning to the end-users and
add complexity to processing data. Those in favor argue that many
organizations have a long history of using coded attributes, that codes
save space, and improve flexibility in that values can be easily added or
modified by means of look-up tables.
Relationships
Relationships are associations between entities. Typically, a
relationship is indicated by a verb connecting two or more entities. For
example: employees are assigned to projects
As relationships are identified they should be classified in terms of
cardinality, optionality, direction, and dependence. As a result of
defining the relationships, some relationships may be dropped and new
relationships added. Cardinality quantifies the relationships between
entities by measuring how many instances of one entity are related to a
single instance of another. To determine the cardinality, assume the
existence of an instance of one of the entities. Then determine how
many specific instances of the second entity could be related to the first.
Repeat this analysis reversing the entities. For example:
Employees may be assigned to no more than three projects at a time;
every project has at least two employees assigned to it.
Here the cardinality of the relationship from employees to projects is
three; from projects to employees, the cardinality is two. Therefore, this
relationship can be classified as a many-to-many relationship.
If a relationship can have a cardinality of zero, it is an optional
relationship. If it must have a cardinality of at least one, the relationship
is mandatory. Optional relationships are typically indicated by the
conditional tense. For example: An employee may be assigned to a
project mandatory relationships, on the other hand, are indicated by
words such as must have.
For example: A student must register for at least three course each
semester
In the case of the specific relationship form (1:1 and 1: M), there is
always a parent entity and a child entity. In one-to-many relationships,
the parent is always the entity with the cardinality of one. In one-to-one
relationships, the choice of the parent entity must be made in the

36

DATABASE MANAGEMENT
SYSTEM

context of the business being modeled. If a decision cannot be made,
the choice is arbitrary.
Naming Data Objects
The names should have the following properties:

o Unique
o Have meaning to the end-user
o Contain the minimum number of words needed to

uniquely and accurately describe the object
For entities and attributes, names are singular nouns while relationship
names are typically verbs.
Some authors advise against using abbreviations or acronyms because
they might lead to confusion about what they mean. Other believe using
abbreviations or acronyms are acceptable provided that they are
universally used and understood within the organization.
You should also take care to identify and resolve synonyms for entities
and attributes. This can happen in large projects where different
departments use different terms for the same thing.
Object Definition
Complete and accurate definitions are important to make sure that all
parties involved in the modeling of the data know exactly what
concepts the objects are representing.
Definitions should use terms familiar to the user and should precisely
explain what the object represents and the role it plays in the enterprise.
Some authors recommend having the end-users provide the definitions.
If acronyms, or terms not universally understood are used in the
definition, then these should be defined.
While defining objects, the modeler should be careful to resolve any
instances where a single entity is actually representing two different
concepts (homonyms) or where two different entities are actually
representing the same "thing" (synonyms). This situation typically
arises because individuals or organizations may think about an event or
process in terms of their own function.
An example of a homonym would be a case where the Marketing
Department defines the entity MARKET in terms of geographical
regions while the Sales Departments thinks of this entity in terms of
demographics. Unless resolved, the result would be an entity with two
different meanings and properties.
Conversely, an example of a synonym would be the Service
Department may have identified an entity called CUSTOMER while
the Help Desk has identified the entity CONTACT. In reality, they may
mean the same thing, a person who contacts or calls the organization
for assistance with a problem. The resolution of synonyms is important
in order to avoid redundancy and to avoid possible consistency or
integrity problems.
Recording Information in Design Document
The design document records detailed information about each object
used in the model. As you name, define, and describe objects, this
information should be placed in this document. If you are not using an

37

DATA MODELING USING
ENTITY RELATIONSHIP

APPROACH & STRUCTURE

NOTES

automated design tool, the document can be done on paper or with a
word processor. There is no standard for the organization of this
document but the document should include information about names,
definitions, and, for attributes, domains.
Two documents used in the IDEF1X method of modeling are useful for
keeping track of objects. These are the ENTITY-ENTITY matrix and
the ENTITY-ATTRIBUTE matrix.

The ENTITY-ENTITY matrix is a two-dimensional array for
indicating relationships between entities. The names of all identified
entities are listed along both axes. As relationships are first identified,
an "X" is placed in the intersecting points where any of the two axes
meet to indicate a possible relationship between the entities involved.
As the relationship is further classified, the "X" is replaced with the
notation indicating cardinality.

The ENTITY-ATTRIBUTE matrix is used to indicate the
assignment of attributes to entities. It is similar in form to the ENTITY-
ENTITY matrix except attribute names are listed on the rows.
Figure 2.2 shows examples of an ENTITY-ENTITY matrix and an
ENTITYATTRIBUTE matrix.

Figure 2.2

Developing the Basic Schema
Once entities and relationships have been identified and defined, the
first draft of the entity relationship diagram can be created. This section
introduces the ER diagram by demonstrating how to diagram binary
relationships. Recursive relationships are also shown.
Binary Relationships
Figure 2.3 shows examples of how to diagram one-to-one, one-to-
many, and many-to-many relationships.

38

DATABASE MANAGEMENT
SYSTEM

Figure 2.3 Example of Binary relationships

One-To-One
Figure 1A shows an example of a one-to-one diagram. Reading the
diagram from left to right represents the relationship every employee is
assigned a workstation. Because every employee must have a
workstation, the symbol for mandatory existence—in this case the
crossbar—is placed next to the WORKSTATION entity. Reading from
right to left, the diagram shows that not all workstation are assigned to
employees. This condition may reflect that some workstations are kept
for spares or for loans. Therefore, we use the symbol for optional
existence, the circle, next to EMPLOYEE. The cardinality and
existence of a relationship must be derived from the "business rules" of
the organization. For example, if all workstations owned by an
organization were assigned to employees, then the circle would be

39

DATA MODELING USING
ENTITY RELATIONSHIP

APPROACH & STRUCTURE

NOTES

replaced by a crossbar to indicate mandatory existence. One-to-one
relationships are rarely seen in "real-world" data models. Some
practioners advise that most one-to-one relationships should be
collapsed into a single entity or converted to a generalization hierarchy.
One-To-Many
Figure 1B shows an example of a one-to-many relationship between
DEPARTMENT and PROJECT. In this diagram, DEPARTMENT is
considered the parent entity while PROJECT is the child. Reading from
left to right, the diagram represents departments may be responsible for
many projects. The optionality of the relationship reflects the "business
rule" that not all departments in the organization will be responsible for
managing projects. Reading from right to left, the diagram tells us that
every project must be the responsibility of exactly one department.
Many-To-Many
Figure 1C shows a many-to-many relationship between EMPLOYEE
and PROJECT. An employee may be assigned to many projects; each
project must have many employee Note that the association between
EMPLOYEE and PROJECT is optional because, at a given time, an
employee may not be assigned to a project. However, the relationship
between PROJECT and EMPLOYEE is mandatory because a project
must have at least two employees assigned. Many-To-Many
relationships can be used in the initial drafting of the model but
eventually must be transformed into two one-to-many relationships.
The transformation is required because many-to-many relationships
cannot be represented by the relational model.
Recursive relationships
A recursive relationship is an entity is associated with itself. Figure 2.4
shows an example of the recursive relationship. An employee may
manage many employees and each employee is managed by one
employee.

Figure 2.4 Example of Recursive relationships

Review & Self Assessment Question

1. A university registrar’s office maintains data about the following
entities:

• Courses, including number, title, credits, syllabus, and prerequisites;
• Course offerings, including course number, year, semester, section

number, instructor(s), timings, and classroom;

40

DATABASE MANAGEMENT
SYSTEM

• Students, including student-id, name, and program;
• Instructors, including identification number, name, department, and

title.
Further, the enrollment of students in courses and grades awarded to
students in each course they are enrolled for must be appropriately
modeled. Construct a E-R diagram for registrar’s office. Document all
assumptions that you make about the mapping constraints
2. Design an E-R diagram for keeping track of the exploits of your
favorite sports team. You should store the matches played, the scores in
each match, the players in each match, and individual player statistics
for each match. Summary statistics should be modeled as derived
attributes.
3. Explain the significance of ER Model for Database design?
4. Enumerate the basic constructs of ER Model
Further Readings

Database Management system by Korth
Database Management system by Navathe
Database Management system by P G Gill
Database Management system by A Leon

IMPORTANT NOTES

41

RELATIONAL
MODEL

NOTES

UNIT-3 RELATIONAL MODEL
Contents
 Relational Model Concepts

 Properties of Relation

 Relational Model constraints

 Relational Language

 Relational Algebra

 Joining

 Union, Intersection and Differences

 Review & Self Assessment Question

 Further Readings

Introduction

The principles of the relational model were first outlined by Dr. E. F.
Codd in a June 1970 paper called "A Relational Model of Data for
Large Shared Data Banks:' In this paper. Dr. Codd proposed the
relational model for database systems. The more popular models used
at that time were hierarchical and network, or even simple flat file data
structures. Relational database management systems (RDBMS) soon
became very popular, especially for their ease of use and flexibility in
structure. In addition, a number of innovative vendors, such as Oracle,
supplemented the RDBMS \with a suite of powerful application
development and user products, providing a total solution.
Earlier we saw how to convert an unorganized text description of
information requirements into a conceptual design, by the use of ER
diagrams. The advantage of ER diagrams is that they force you to
identify data requirements that are implicitly known, but not explicitly
written down in the original description. Here we will see how to
convert this ER into a logical design (this will be defined below) of a
relational database.
The logical model is also called a Relational Model.
Relational Model Concepts

We shall represent a relation as a table with columns and rows. Each
column of the table has a name, or attribute. Each row is called a tuple.
• Domain: a set of atomic values that an attribute can take Attribute:
name of a column in a particular table (all data is stored in tables).
Each attribute Ai must have a domain, dom(Ai).

42

DATABASE MANAGEMENT
SYSTEM

• Relational Schema: The design of one table, containing the name of
the table (i.e. the name of the relation), and the names of all the
columns, or attributes.
Example: STUDENT (Name, SID, Age, GPA)
• Degree of a Relation: the number of attributes in the relation's
schema.
• Tuple, t, of R (A1, A2, A3, …, An): an ORDERED set of values, <
v1, v2, v3, …, vn>, where each vi is a value from dom(Ai).
• Relation Instance, r(R): a set of tuples; thus, r(R) = { t1, t2, t3, …,
tm}

Properties of relations
Properties of database relations are:

• Relation name is distinct from all other relations
• Each cell of relation contains exactly one atomic (single) value
• Each attribute has a distinct name
• Values of an attribute are all from the same domain
• Order of attributes has no significance
• Each tuple is distinct; there are no duplicate tuples
• Order of tuples has no significance, theoretically.

Relational keys
There are two kinds of keys in relations. The first are identifying keys:
the primary key is the main concept, while two other keys – super key
and candidate key – are related concepts. The second kind is the foreign
key.
Identity Keys:
Super Keys
A super key is a set of attributes whose values can be used to uniquely
identify a tuple within a relation. A relation may have more than one
super key, but it always has at least one: the set of all attributes that
make up the relation.

43

RELATIONAL
MODEL

NOTES

Candidate Keys
A candidate key is a super key that is minimal; that is, there is no
proper subset that is itself a super key. A relation may have more than
one candidate key, and the different candidate keys may have a
different number of attributes. In other words, you should not interpret
'minimal' to mean the super key with the fewest attributes.
A candidate key has two properties:
(i) In each tuple of R, the values of K uniquely identify that tuple
(uniqueness)
(ii) No proper subset of K has the uniqueness property (irreducibility).
Primary Key
The primary key of a relation is a candidate key especially selected to
be the key for the relation. In other words, it is a choice, and there can
be only one candidate key designated to be the primary key.
Relationship between identity keys
The relationship between keys:
Super key->Candidate Key-> Primary Key
Foreign keys
The attribute(s) within one relation that matches a candidate key of
another relation. A relation may have several foreign keys, associated
with different target relations.
Foreign keys allow users to link information in one relation to
information in another relation. Without FKs, a database would be a
collection of unrelated tables.
Relational Model Constraints
Integrity Constraints
Each relational schema must satisfy the following four types of
constraints.
A. Domain constraints
Each attribute Ai must be an atomic value from dom(Ai) for that
attribute.
The attribute, Name in the example is a BAD DESIGN (because
sometimes we may want to search a person by only using their last
name.
B. Key Constraints
Super key of R: A set of attributes, SK, of R such that no two tuples in
any valid relational instance, r(R), will have the same value for SK.
Therefore, for any two distinct tuples, t1 and t2 in r(R), t1 [SK] !=
t2[SK].
Key of R: A minimal super key. That is, a super key, K, of R such that
the removal of ANY attribute from K will result in a set of attributes
that are not a super key.

44

DATABASE MANAGEMENT
SYSTEM

Example CAR(State,LicensePlateNo,VehicleID, Model, Year,
Manufacturer)
This schema has two keys:

K1 = {State, LicensePlateNo}
K2 = {VehicleID }

Both K1 and K2 are superkeys.
K3 = { VehicleID, Manufacturer} is a super key, but not a key.

If a relation has more than one keys, we can select any one (arbitrarily)
to be the primary key. Primary Key attributes are underlined in the
schema:
CAR(State, LicensePlateNo, VehicleID, Model, Year, Manufacturer)
C. Entity Integrity Constraints
The primary key attribute, PK, of any relational schema R in a database
cannot have null values in any tuple. In other words, for each table in a
DB, there must be a key; for each key, every row in the table must have
non-null values. This is because PK is used to identify the individual
tuples.

Mathematically, t[PK] != NULL for any tuple t € r(R).
D. Referential Integrity Constraints
Referential integrity constraints are used to specify the relationships
between two relations in a database.
Consider a referencing relation, R1, and a referenced relation, R2.
Tuples in the referencing relation, R1, have attributed FK (called
foreign key attributes) that reference the primary key attributes of the
referenced relation, R2. A tuple, t1, in R1 is said to reference a tuple,
t2, in R2 if t1[FK] = t2[PK].
A referential integrity constraint can be displayed in a relational
database schema as a directed arc from the referencing (foreign) key to
the referenced (primary) key. Examples are shown in the figure below:

45

RELATIONAL
MODEL

NOTES

ER-to-Relational Mapping
Now we are ready to lay down some informal methods to help us create
the Relational schemas from our ER models. These will be described in
the following steps:
1. For each regular entity, E, in the ER model, create a relation R that
includes all the simple attributes of E. Select the primary key for E, and
mark it.
2. For each weak entity type, W, in the ER model, with the Owner
entity type, E, create a relation R with all attributes of W as attributes of
W, plus the primary key of E. [Note: if there are identical tuples in W
which share the same owner tuple, then we need to create an additional
index attribute in W.]
3. For each binary relation type, R, in the ER model, identify the
participating entity types, S and T.
• For 1:1 relationship between S and T
Choose one relation, say S. Include the primary key of T as a foreign
key of S.
• For 1:N relationship between S and T
Let S be the entity on the N side of the relationship. Include the primar
key of T as a foreign key in S.
• For M: N relation between S and T
Create a new relation, P, to represent R. Include the primary keys of
both, S and T as foreign keys of P.
4. For each multi-valued attribute A, create a new relation, R, that
includes all attributes corresponding to A, plus the primary key
attribute, K, of the relation that represents the entity type/relationship
type that has A as an attribute.
5. For each n-ary relationship type, n > 2, create a new relation S.
Include as foreign key attributes in S the primary keys of the relations
representing each of the participating entity types. Also include any
simple attributes of the n-ary relationship type as attributes of S.
Relational Languages
We have so far considered the structure of a database; the relations and
the associations between relations. In this section we consider how
useful data may be extracted and filtered from database tables. A
relational language is needed to express these queries in a well defined
way. A relational language is an abstract language which provides the
database user with an interface through which they can specify data to
be retrieved according to certain selection criteria. The two main
relational languages are relational algebra and relational calculus.
Relational algebra, which we focus on here, provides the user with a set
of operators which may be used to create new (temporary) relations
based on information contained in existing relations. Relational
calculus, on the other hand, provides a set of key words to allow the
user to make ad hoc inquiries.

46

DATABASE MANAGEMENT
SYSTEM

Relational Algebra
Relational algebra is a procedural language consisting of a set of
operators. Each operator takes one or more relations as its input and
produces one relation as its output. The seven basic relational algebra
operations are Selection, Projection, Joining, Union, Intersection,
Difference and Division. It is important to note that these operations do
not alter the database. The relation produced by an operation is
available to the user but it is not stored in the database by the operation.
Selection (also called Restriction)
The SELECT operator selects all tuples from some relation, so that
some attributes in each tuple satisfy some condition. A new relation
containing the selected tuples is then created as output. Suppose we
have the relation STORES:

The relational operation:

R l = SELECT STORES WHERE Location = 'Dublin'
selects all tuples for stores that are located in Dublin and creates the
new relation R1 which appears as follows:

We can also impose conditions on more than one attribute. For
example,
R2 = SELECT STORES WHERE Location = 'Dublin' AND No-Bins >
100
This operation selects only one tuple from the relation:

Projection
The projection operator constructs a new relation from some existing
relation by selecting only specified attributes of the existing relation
and eliminating duplicate tuples in the newly formed relation. For
example,

47

RELATIONAL
MODEL

NOTES

R3 = PROJECT STORES OVER Store-ID, Location results in:

Given the following operation,

R4 = PROJECT STORES OVER Location
Joining
Joining is a operation for combining two relations into a single relation.
At the outset, it requires choosing the attributes to match the tuples in
each relation. Tuples in different relations but with the same value of
matching attributes are combined into a single tuple in the output
relation.
For example, with a new relation ITEMS:

… and our previous STORES relation:

if we joined ITEMS to STORES using the operator:
R5 = JOIN STORES, ITEMS OVER Store-ID
the resulting relation R5 would appear as follows:

This relation resulted from a joining of ITEMS and STORES over the
common attribute Store-ID, i.e. any tuples of each relation which

48

DATABASE MANAGEMENT
SYSTEM

contained the same value of Store-ID were joined together to form a
single tuple.
Joining relations together based on equality of values of common
attributes is called an equijoin. Conditions of join may be other than
equality - we may also have a ‘greater than’ or ‘less-than’ join.
When duplicate attributes are removed from the result of an equijoin
this is called an natural join. The example above is such a natural join -
as Store-ID appears only once in the result.
Note that there is often a connection between keys (primary and
foreign) and the attributes over which a join is performed in order to
amalgamate information from multiple related tables in a database. In
the above example, ITEMS.Store_ID is a foreign key reflecting the
primary key STORE.Store_ID. When we join on Store_ID the
relationship between the tables is expressed explicitly in the resulting
output table. To illustrate, the relationship between these relations can
be expressed as an E-R diagram, shown below.

Union, Intersection and Difference
These are the standard set operators. The requirement for carrying out
any of these operations is that the two operand relations are union-
compatible - i.e. they have the same number of attributes (say n) and
the ith attribute of each relation (i = l,…,n) must be from the same
domain (they do not have to have the same attribute names).
UNION
The UNION operator builds a relation consisting of all tuples appearing
in either or both of two specified relations.
INTERSECT
The INTERSECT operator builds a relation consisting of all tuples
appearing strictly in both specified relations
DIFFERENCE
The DIFFERENCE operator builds a relation consisting of all tuples
appearing in the first, but not the second of two specified relations.

49

RELATIONAL
MODEL

NOTES

This may be represented diagrammatically as shown below.

As an exercise, find:
C=UNION(A,B),C =INTERSTION(A,B) and C= DIFFERENCE(A,B).

Division
In its simplest form, this operation has a binary relation R(X,Y) as the
dividend and a divisor that includes Y. The output is a set, S, , of values
of X such that x € S if there is a row (x,y) in R for each y value in the
divisor.
As an example, suppose we have two relations R6 and R7:

The operation:
R8 = R6 / R7 will give the result:

50

DATABASE MANAGEMENT
SYSTEM

This is because C3 is the only company for which there is a row with
Boston and New York. The other companies, C1 and C2, do not satisfy
this condition.
A Relational Database Management Systems-
ORACLE
The Oracle database is a relational database system from Oracle
Corporation extensively used in product and internet-based applications
in different platforms. Oracle database was developed by Larry Ellison,
along with friends and former coworkers Bob Miner and Ed Oates, who
had started a consultancy called Software Development Laboratories
(SDL). They called their finished product Oracle, after the code name
of a CIA-funded project they had worked on at a previous employer,
Ampex.
Oracle9i Database Rel c 2 features full XML database functionality
with Oracle XML DB, enhancements to the groundbreaking Oracle
Real Application Clusters, and self-tuning and self-management
capabilities to help improve DBA productivity and efficiency. In
addition, the built-in OLAP functionality has been expanded and
significant enhancements and optimizations have been made for the
Windows and Linux operating systems
Some of the Oracle database is as follows:
• Enterprise User Security -Password Based Enterprise User Security -
Administering user accounts is a very time consuming and costly
activity in many organizations. For example, users may lose their
passwords, change roles or leave the company. Without timely user
administration, the field is open for data misuse and data loss. By
introducing password based authentication, Oracle 9i Advanced
Security has improved the ease-of-use and simplified enterprise user
setup and administration.
• Oracle Partitioning -Oracle Partitioning, an option of Oracle9i
Enterprise Edition, can enhance the manageability, performance, and
availability of a wide variety of applications. Partitioning allows tables,
indexes, and index-organized tables to be subdivided into smaller
pieces, enabling these database objects to be managed and accessed at a
finer level of granularity.
• Oracle Generic Connectivity and Oracle Transparent Gateway –
Oracle offers two connectivity solutions to address the needs of
disparate data access. They are: Oracle Generic Connectivity and
Oracle Transparent Gateways. These two solutions make it possible to
access any number of non-Oracle systems from an Oracle environment
in a heterogeneously distributed environment.
• Performance Improvements -Performance is always a big issue with
databases. The biggest improvements have been to Parallel Server
which Oracle now calls Real Application Clusters and which allow
applications to use clustered servers without modification.

51

RELATIONAL
MODEL

NOTES

• Security Enhancements -As the number of users increase and the
locations and types of users become more diverse, better security (and
privacy) features become essential.
Review & Self Assessment Question

1. Explain in brief the relational approach to data base structures.
2. What is a relation? What are its characteristics?
3. Explain any three relational operators with example.
4. Explain various relational constraints with example.
5. Explain Relational Algebra. What are the relational algebra

operations that can be performed?
Further Readings

Database Management system by Korth
Database Management system by Navathe
Database Management system by P G Gill
Database Management system by A Leon

IMPORTANT NOTES

52

DATABASE MANAGEMENT
SYSTEM

UNIT-4 STRUCTURE QUERY
LANGUAGE

Contents
 Introduction and History

 SQL

 Data Definition Language

 Transaction control Language

 Transaction Control Language Commands

 Indexes in SQL

 Review & Self Assessment Question

 Further Readings

Introduction and History
In this chapter we want to emphasize that SQL is both deep and wide.
Deep in the sense that it is implemented at many levels of database
communication, from a simple Access form list box right up to high-
volume communications between mainframes. SQL is widely
implemented in that almost every DBMS supports SQL statements for
communication. The reason for this level of acceptance is partially
explained by the amount of effort that went into the theory and
development of the standards.
Current State
So the ANSI-SQL group has published three standards over the years:

• SQL89 (SQL1)

• SQL92 (SQL2)

• SQL99 (SQL3)
The vast majority of the language has not changed through these
updates. We can all profit from the fact that almost all of the code we
wrote to SQL standards of 1989 is still perfectly usable. Or in other
words, as a new student of SQL there is over ten years of SQL code out
there that needs your expertise to maintain and expand.
Most DBMS are designed to meet the SQL92 standard. Virtually all of
the material in this book was available in the earlier standards as well.
Since many of the advanced features of SQL92 have yet to be
implemented by DBMS vendors, there has been little pressure for a
new version of the standard. Nevertheless a SQL99 standard was
developed to address advanced issues in SQL.

53

STRUCTURE QUERY
LANGUAGE

NOTES

There are three areas where there is current development in SQL
standards. First entails improving Internet access to data, particularly to
meet the needs of the emerging XML standards. Second is integration
with Java, either through Sun's Java Database Connectivity (JDBC) or
through internal implementations. Last, the groups that establish SQL
standards are considering how to integrate object- based programming
models.
SQL:
Structured Query Language, commonly abbreviated to SQL and
pronounced as “sequel”, is not a conventional computer programming
language in the normal sense of the phrase. It allows users to access
data in relational database management systems. SQL is about data and
results, each SQL statement returns a result, whether that result be a
query, an update to a record or the creation of a database table. SQL is
most often used to address a relational database, which is what some
people refer to as a SQL database. So in brief we can describe SQL as
follows:

• SQL stands for Structured Query Language

• SQL allows you to access a database

• SQL can execute queries against a database

• SQL can retrieve data from a database

• SQL can insert new records in a database

• SQL can delete records from a database

• SQL can update records in a database

• SQL is easy to learn
Creating a Database
Many database systems have graphical interfaces which allow
developers (and users) to create, modify and otherwise interact with the
underlying database management system (DBMS). However, for the
purposes of this chapter all interactions with the DBMS will be via
SQL commands rather than via menus.
SQL Commands
There are three groups of commands in SQL:

1. Data Definition
2. Data Manipulation and
3. Transaction Control

Characteristics of SQL Commands
Here you can see that SQL commands follow a number of basic rules:

54

DATABASE MANAGEMENT
SYSTEM

• SQL keywords are not normally case sensitive, though this in this
tutorial all commands (SELECT, UPDATE etc) are upper-cased.
• Variable and parameter names are displayed here as lower-case.
• New-line characters are ignored in SQL, so a command may be all on
one line or broken up across a number of lines for the sake of clarity.
• Many DBMS systems expect to have SQL commands terminated with
a semicolon character.
Data Definition Language (DDL)
The Data Definition Language (DDL) part of SQL permits database
tables to be created or deleted. We can also define indexes (keys),
specify links between tables, and impose constraints between database
tables.
The most important DDL statements in SQL are:

• CREATE TABLE - creates a new database table
• ALTER TABLE - alters (changes) a database table
• DROP TABLE - deletes a database table

How to create table
Creating a database is remarkably straightforward. The SQL command
which you have to give is just:

CREATE DATABASE dbname;
The SQL statement to create a table has the basic form:
CREATE TABLE name (col1 datatype, col2 datatype,);
So, to create our User table we enter the following command:
CREATE TABLE User (FirstName TEXT, LastName TEXT, UserID
TEXT, Dept TEXT, EmpNo INTEGER, PCType TEXT);
The TEXT datatype, supported by many of the most common DBMS,
specifies a string of characters of any length. In practice there is often a
default string length which varies by product. In some DBMS TEXT is
not supported, and instead a specific string length has to be declared.
Fixed length strings are often called CHAR(x), VCHAR(x) or
VARCHAR(x), where x is the string length. In the case of INTEGER
there are often multiple flavors of integer available. Remembering that
larger integers require more bytes for data storage, the choice of int size
is usually a design decision that ought to be made up front.
How to modify table
Once a table is created it's structure is not necessarily fixed in stone. In
time requirements change and the structure of the database is likely to
evolve to match your wishes. SQL can be used to change the structure
of a table, so, for example, if we need to add a new field to our User
table to tell us if the user has Internet access, then we can execute an
SQL ALTER TABLE command as shown below:
ALTER TABLE User ADD COLUMN Internet BOOLEAN;
To delete a column the ADD keyword is replaced with DROP, so to
delete the field we have just added the SQL is:
ALTER TABLE User DROP COLUMN Internet;
How to delete table

55

STRUCTURE QUERY
LANGUAGE

NOTES

If you have already executed the original CREATE TABLE command
your database will already contain a table called User, so let's get rid of
that using the DROP command:
DROP TABLE User;
And now we'll recreate the User table we'll use throughout the rest of
this tutorial:
CREATE TABLE User (FirstName VARCHAR (20), LastName
VARCHAR (20), UserID VARCHAR (12) UNIQUE, Dept
VARCHAR (20), EmpNo INTEGER UNIQUE, PCType VARCHAR
(20);
Data Manipulation Language (DML)
SQL language also includes syntax to update, insert, and delete records.
These query and update commands together form the Data
Manipulation Language (DML) part of SQL:

• INSERT INTO - inserts new data into a database table
• UPDATE - updates data in a database table
• DELETE - deletes data from a database table
• SELECT - extracts data from a database table

How to Insert Data
Having now built the structure of the database it is time to populate the
tables with some data. In the vast majority of desktop database
applications data entry is performed via a user interface built around
some kind of GUI form. The form gives a representation of the
information required for the application, rather than providing a simple
mapping onto the tables. So, in this sample application you would
imagine a form with text boxes for the user details, drop-down lists to
select from the PC table, drop-down selection of the software packages
etc. In such a situation the database user is shielded both from the
underlying structure of the database and from the SQL which may be
used to enter data into it. However we are going to use the SQL directly
to populate the tables so that we can move on to the next stage of
learning SQL.
The command to add new records to a table (usually referred to as an
append query), is:
INSERT INTO target [(field1 [, field2 [, ...]])] VALUES (value1[,
value2[, ...]);
So, to add a User record for user Jim Jones, we would issue the
following INSERT query:
INSERT INTO User (FirstName, LastName, UserID, Dept, EmpNo,
PCType) 6 VALUES ("Jim", "Jones", "Jjones","Finance", 9,
"DellDimR450");
Obviously populating a database by issuing such a series of SQL
commands is both tedious and prone to error, which is another reason
why database applications have frontends. Even without a specifically
designed front-end, many database systems – including MS Access -
allow data entry direct into tables via a spreadsheet-like interface.

56

DATABASE MANAGEMENT
SYSTEM

The INSERT command can also be used to copy data from one table
into another. For example, The SQL query to perform this is:
INSERT INTO User (FirstName, LastName, UserID, Dept, EmpNo,
PCType, Internet)
SELECT FirstName, LastName, UserID, Dept, EmpNo, PCType,
Internet FROM NewUsers;
How to Update Data
The INSERT command is used to add records to a table, but what if
you need to make an amendment to a particular record? In this case the
SQL command to perform updates is the UPDATE command, with
syntax:

UPDATE table SET newvalue WHERE criteria;
For example, let's assume that we want to move user Jim Jones from
the Finance department to Marketing. Our SQL statement would then
be:
UPDATE User SET Dept="Marketing" mWHERE EmpNo=9;
Notice that we used the EmpNo field to set the criteria because we
know it is unique. If we'd used another field, for example LastName,
we might have accidentally updated the records for any other user with
the same surname.
The UPDATE command can be used for more than just changing a
single field or record at a time. The SET keyword can be used to set
new values for a number of different fields, so we could have moved
Jim Jones from Finance to marketing and changed the PCType as well
in the same statement (SET Dept="Marketing", PCType="PrettyPC").
Or if all of the Finance department were suddenly granted Internet
access then we could have issued the following SQL query:
UPDATE User SET Internet=TRUE WHERE Dept="Finance";
You can also use the SET keyword to perform arithmetical or logical
operations on the values. For example if you have a table of salaries
and you want to give everybody a 10% increase you can issue the
following command:
UPDATE PayRoll SET Salary=Salary * 1.1;
How to Delete Data
Now that we know how to add new records and to update existing
records it only remains to learn how to delete records before we move
on to look at how we search through and collate data. As you would
expect SQL provides a simple command to delete complete records.
The syntax of the command is:
DELETE [table.*] FROM table WHERE criteria;
Let's assume we have a user record for John Doe, (with an employee
number of 99), which we want to remove from our User we could issue
the following query:
DELETE * FROM User WHERE EmpNo=99;
In practice delete operations are not handled by manually keying in
SQL queries, but are likely to be generated from a front end system
which will handle warnings and add safeguards against accidental
deletion of records.

57

STRUCTURE QUERY
LANGUAGE

NOTES

Note that the DELETE query will delete an entire record or group of
records. If you want to delete a single field or group of fields without
destroying that record then use an UPDATE query and set the fields to
Null to over-write the data that needs deleting. It is also worth noting
that the DELETE query does not do anything to the structure of the
table itself, it deletes data only. To delete a table, or part of a table, then
you have to use the DROP clause of an ALTER TABLE query.
Transaction Control Language (TCL)
The SQL Data Control Language (DCL) provides security for your
database. The DCL consists of the GRANT, REVOKE, COMMIT, and
ROLLBACK statements. GRANT and REVOKE statements enable
you to determine whether a user can view, modify, add, or delete
database information.
Working with transaction control
Applications execute a SQL statement or group of logically related
SQL statements to perform a database transaction. The SQL statement
or statements add, delete, or modify data in the database.
Transactions are atomic and durable. To be considered atomic, a
transaction must successfully complete all of its statements; otherwise
none of the statements execute. To be considered durable, a
transaction's changes to a database must be permanent.
Complete a transaction by using either the COMMIT or ROLLBACK
statements. COMMIT statements make permanent the changes to the
database created by a transaction. ROLLBACK restores the database to
the state it was in before the transaction was performed.
SQL Transaction Control Language Commands (TCL.)
This page contains some SQL TCL. Commands that I think it might be
useful. Each command's description is taken and modified from the
SQLPlus help. They are provided as is and most likely are partially
described. So, if you want more detail or other commands, please use
HELP in the SQLPlus directly.
COMMIT
PURPOSE:
To end your current transaction and make permanent all changes
performed in the transaction. This command also erases all savepoints
in the transaction and releases the transaction's locks. You can also use
this command to manually commit an in-doubt distributed transaction.
SYNTAX:
COMMIT [WORK]
[COMMENT 'text' FORCE 'text' [, integer]]
Where:
• WORK: is supported only for compliance with standard SQL. The
statements COMMIT and COMMIT WORK are equivalent.
• COMMENT: specifies a comment to be associated with the current
transaction.

58

DATABASE MANAGEMENT
SYSTEM

The 'text' is a quoted literal of up to 50 characters that Oracle stores in
the data dictionary view DBA_2PC_PENDING along with the
transaction ID if the transaction becomes in-doubt.

• FORCE: manually commits an in-doubt distributed transaction. The
transaction is identified by the 'text' containing its local or global
transaction ID. To find the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING.
You can also use the integer to specifically assign the transaction a
system change number (SCN). If you omit the integer, the transaction is
committed using the current SCN.
COMMIT statements using the FORCE clause are not supported in
PL/SQL.
PREREQUISITES:
You need no privileges to commit your current transaction. To
manually commit a distributed in-doubt transaction that you originally
committed, you must have FORCE TRANSACTION system privilege.
To manually commit a distributed in-doubt transaction that was
originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.
Example:
To commit your current transaction, enter
SQL> COMMIT WORK;
Commit complete.
ROLLBACK
PURPOSE:
To undo work done in the current transaction. You can also use this
command to manually undo the work done by an in-doubt distributed
transaction.
SYNTAX: ROLLBACK [WORK][TO [SAVEPOINT] save point
FORCE 'text']
Where:
• WORK: is optional and is provided for ANSI compatibility.
• TO : rolls back the current transaction to the specified save point. If
you omit this clause, the ROLLBACK statement rolls back the entire
transaction.
• FORCE: manually rolls back an in-doubt distributed transaction. The
transaction is identified by the 'text' containing its local or global
transaction ID. To find the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING.
ROLLBACK statements with the FORCE clause are not supported in
PL/SQL.
PREREQUISITES: To roll back your current transaction, no
privileges are necessary. To manually roll back an in-doubt distributed
transaction that you originally committed, you must have FORCE
TRANSACTION system privilege. To manually roll back an in doubt

59

STRUCTURE QUERY
LANGUAGE

NOTES

distributed transaction originally committed by another user, you must
have FORCE ANY TRANSACTION system privilege.
Example:
To rollback your current transaction, enter
SQL> ROLLBACK;
Rollback complete.
Creating users
• Creating database administrators
• Creating users
The CREATE statement is not a part of the Data Control Language, but
rather the Data Definition Language. This chapter addresses the
CREATE statement as it relates to the creation of database
administrators and users.
Creating database administrators
Database security is defined and controlled by database administrators
(DBAs). Within the scope of database security, DBAs are responsible
for:

• Adding users.
• Deleting users.
• Permitting access to specific database objects.
• Limiting or prohibiting access to database objects.
• Granting users privileges to view or modify database objects.
• Modifying or revoking privileges that have been granted to the

users.
A user who initially creates a database becomes its default
administrator. Therefore, this initial user has the authority to create
other administrator accounts for that particular database. OpenEdge
Studio offers two methods for creating DBAs:

• In SQL, the DBA uses the CREATE statement to create a user
and then uses the GRANT statement to provide the user with
administrative privileges.
• In Progress 4GL, a DBA uses the Data Administration Tool to
create other administrators.

Creating users
Use the following syntax to employ the CREATE USER statement:
Syntax: CREATE USER 'username', 'password' ;
In Example 4-1, an account with DBA privileges creates the 'username'
'GPS' with 'password' 'star'.
Example 4-1: CREATE USER statement
CREATE USER 'GPS', 'star';
A user's password can be changed easily by using the ALTER USER
statement:
Syntax
ALTER USER 'username', 'old_password', 'new_password';
ALTER USER 'GPS', 'star', 'star1';

60

DATABASE MANAGEMENT
SYSTEM

• When users are created, the default DBA (the user who created the
database) becomes disabled. It is important to grant DBA access to at
least one user so you will have a valid DBA account.
• The user's password can be easily changed using the ALTER USER
statement. Granting privileges
This section covers the following information:
• Privilege basics
• GRANT statement
Privilege basics
There are two types of privileges those granted on databases and those
granted on tables, views, and procedures.
Privileges for databases:
• Granting or restricting system administration privileges (DBA).
• Granting or restricting general creation privileges on a database
(RESOURCE).
Privileges granted on tables, views, and procedures grant or restrict
operations on specific operations, such as:
• Altering an object definition.
• Deleting, inserting, selecting and updating records.
• Executing stored procedures.
• Granting privileges.
• Defining constraints to an existing table.
GRANT statement
The GRANT statement can be used to provide the user with two
different types of privileges:

• Database-wide privileges
• Table-specific privileges

Database-wide privileges
Database-wide privileges grant the user either DBA or RESOURCE
privileges. Users with DBA privileges have the ability to access,
modify, or delete a database object and to grant privileges to other
users. RESOURCE privileges allow a user to create database objects.
The GRANT statement syntax for granting RESOURCE or DBA
privileges is:
Syntax:
GRANT {RESOURCE, DBA}
TO username [, username], ... ;
The following statement provides resource privileges to user 'GSP'.
GRANT RESOURCE TO 'GSP';
In this case, GSP is granted the privilege to issue CREATE statements,
and can therefore add objects, such as tables, to the database.
Table-specific privileges can be granted to users so they can view, add,
delete, or create indexes for data within a table. Privileges can also be
granted to allow users to refer to a table from another table's constraint
definitions.
The GRANT statement syntax for granting table-specific privileges is:

61

STRUCTURE QUERY
LANGUAGE

NOTES

Syntax
GRANT {privilege [, privilege], ... ALL}
ON table_name
TO {username [, username], ... | PUBLIC}
[WITH GRANT OPTION] ;
This is the syntax for the privilege value:
Syntax
{ SELECT | INSERT | DELETE | INDEX
| UPDATE [(column , column , ...)]
| REFERENCES [(column , column , ...)] }
In this instance, a DBA restricts the types of activities a user is allowed
to perform on a table. In the following example, 'GSP' is given
permission to update the item name, item number, and catalog
descriptions found in the item table.
Note: By employing the WITH GRANT OPTION clause, you enable a
user to grant the same privilege he or she has been granted to others.
This clause should be used carefully due to its ability to affect database
security.
GRANT UPDATE
ON Item (ItemNum, ItemName, CatDescription)
TO 'GSP';
The GRANT UPDATE statement has limited GSP's ability to interact
with the item table.
Now, if GSP attempts to update a column to which he has not been
granted access, the database will return the error message in Example
4-5:
Example 4-5: SQL error message
=== SQL Exception 1 ===
SQLState=HY000
ErrorCode=-20228
[JDBC Progress Driver}:Access Denied (Authorisation
failed) (7512)
Granting public access
The GRANT statement can be easily modified to make previously
restricted columns accessible to the public, as in Example 4-6.
Example 4-6: Granting update privilege to public
GRANT UPDATE
ON Item (ItemNum, ItemName, CatDescription)
TO PUBLIC;
Revoking privileges
The REVOKE statement can be used for a wide variety of purposes. It
can revoke a single user's access to a single column or it can revoke the
public's privilege to access an entire database.
Privileges are revoked in the same manner in which they are
granted_database-wide or table-specific.
The syntax for using the REVOKE statement to revoke database-wide
privileges is:

62

DATABASE MANAGEMENT
SYSTEM

Syntax
REVOKE {RESOURCE, DBA}
FROM {username [, username], ...};
The syntax for using the REVOKE statement to revoke table-specific
privileges is:
Syntax
REVOKE [GRANT OPTION FOR] {privilege [, privilege], ... |ALL
[PRIVILEGES]} ON table_name
FROM {username[,username], ... |PUBLIC} [RESTRICT|CASCADE];
where privilege is:
{EXECUTE|SELECT|INSERT|DELETE|INDEX|UPDATE
[(COLUMN, COLUMN, ...)]|
REFERENCES [(COLUMN, COLUMN, ...)]}
The REVOKE statement can be used to remit the privileges previously
granted to 'GPS'as shown in Example 4-7.
REVOKE UPDATE
ON Item (ItemNum, ItemName, CatDescription)
FROM "GPS"
If the REVOKE statement specifies RESTRICT, SQL checks if the
privilege being revoked was passed on to other users. This is possible
only if the original privilege included the WITH GRANT OPTION
clause. If so, the REVOKE statement fails and generates an error. If the
privilege was not passed on, the REVOKE statement succeeds.
If the REVOKE statement specifies CASCADE, revoking the access
privileges from a user also revokes the privileges from all users who
received the privilege from that user.
If the REVOKE statement specifies neither RESTRICT nor
CASCADE, the behavior is the same as for CASCADE.
Constraints in SQL
Data types are a way to limit the kind of data that can be stored in a
table. For many applications, however, the constraint they provide is
too coarse. For example, a column containing a product price should
probably only accept positive values. But there is no data type that
accepts only positive numbers. Another issue is that you might want to
constrain column data with respect to other columns or rows. For
example, in a table containing product information, there should only
be one row for each product number.
To that end, SQL allows you to define constraints on columns and
tables. Constraints give you as much control over the data in your tables
as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value
came from the default value definition.
Check Constraints
A check constraint is the most generic constraint type. It allows you to
specify that the value in a certain column must satisfy an arbitrary
expression. For instance, to require positive product prices, you could
use:

63

STRUCTURE QUERY
LANGUAGE

NOTES

CREATE TABLE products (product_no integer, name text, price
numeric CHECK
(price > 0));
As you see, the constraint definition comes after the data type, just like
default value definitions. Default values and constraints can be listed in
any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint
expression should involve the column thus constrained, otherwise the
constraint would not make too much sense.

Not-Null Constraints
A not-null constraint simply specifies that a column must not assume
the null value. A syntax example:
CREATE TABLE products (product_no integer NOT NULL, name
text NOTNULL, price numeric);
A not-null constraint is always written as a column constraint. A not-
null constraint is functionally equivalent to creating a check constraint
CHECK (column_name IS NOT NULL), but in PostgreSQL creating
an explicit not-null constraint is more efficient. The drawback is that
you cannot give explicit names to not-null constraints created that way.
Unique Constraints
Unique constraints ensure that the data contained in a column or a
group of columns is unique with respect to all the rows in the table. The
syntax is
CREATE TABLE products (product_no integer UNIQUE, name text,
pricenumeric);
when written as a column constraint, and
CREATE TABLE products (product_no integer, name text, price
numeric,UNIQUE (product_no));
when written as a table constraint.
Primary Key Constraints
Technically, a primary key constraint is simply a combination of a
unique constraint and a not-null constraint. So, the following two table
definitions accept the same data:
CREATE TABLE products (product_no integer UNIQUE NOT NULL,
name text,price numeric);
CREATE TABLE products (product_no integer PRIMARY KEY,name
text,price numeric);
Primary keys can also constrain more than one column; the syntax is
similar to unique constraints:
CREATE TABLE example (a integer,b integer,c integer, PRIMARY
KEY (a, c));
A primary key indicates that a column or group of columns can be used
as a unique identifier for rows in the table. (This is a direct consequence
of the definition of a primary key. Note that a unique constraint does
not, in fact, provide a unique identifier because it does not exclude null
values.) This is useful both for documentation purposes and for client

64

DATABASE MANAGEMENT
SYSTEM

applications. For example, a GUI application that allows modifying row
values probably needs to know the primary key of a table to be able to
identify rows uniquely.
Foreign Keys Constraints
A foreign key constraint specifies that the values in a column (or a
group of columns) must match the values appearing in some row of
another table. We say this maintains the referential integrity between
two related tables.
Say you have the product table that we have used several times already:
CREATE TABLE products (product_no integer PRIMARY KEY,
name text, price numeric);
Let's also assume you have a table storing orders of those products. We
want to ensure that the orders table only contains orders of products
that actually exist. So we define a foreign key constraint in the orders
table that references the products table:
CREATE TABLE orders (order_id integer PRIMARY
KEY,product_no integer REFERENCES products (product_no),
quantity integer);
Now it is impossible to create orders with product_no entries that do
not appear in the products table.
We say that in this situation the orders table is the referencing table and
the products table is the referenced table. Similarly, there are
referencing and referenced columns.
Indexes in SQL
Relational databases like SQL Server use indexes to find data quickly
when a query is processed. Creating and removing indexes from a
database schema will rarely result in changes to an application's code;
indexes operate 'behind the scenes' in support of the database engine.
However, creating the proper index can drastically increase the
performance of an application.
The SQL Server engine uses an index in much the same way a reader
uses a book index.
For example, one way to find all references to INSERT statements in a
SQL book would be to begin on page one and scan each page of the
book. We could mark each time we find the word INSERT until we
reach the end of the book. This approach is pretty time consuming and
laborious. Alternately, we can also use the index in the back of the book
to find a page number for each occurrence of the INSERT statements.
This approach produces the same results as above, but with tremendous
savings in time.
When a SQL Server has no index to use for searching, the result is
similar to the reader who looks at every page in a book to find a word:
the SQL engine needs to visit every row in a table. In database
terminology we call this behavior a table scan, or just scan.
A table scan is not always a problem, and is sometimes unavoidable.
However, as a table grows to thousands of rows and then millions of
rows and beyond, scans become correspondingly slower and more
expensive.

65

STRUCTURE QUERY
LANGUAGE

NOTES

Consider the following query on the Products table of the Northwind
database. This query retrieves products in a specific price range.

SELECT ProductID, ProductName, UnitPrice FROM Products
WHERE (UnitPrice > 12.5) AND (UnitPrice < 14)
There is currently no index on the Product table to help this query, so
the database engine performs a scan and examines each record to see if
UnitPrice falls between 12.5 and 14.
In the diagram below, the database search touches a total of 77 records
to find just three matches.

Now imagine if we created an index, just like a book index, on the data
in the UnitPrice column. Each index entry would contain a copy of the
UnitPrice value for a row, and a reference (just like a page number) to
the row where the value originated. SQL will sort these index entries
into ascending order. The index will allow the database to quickly
narrow in on the three rows to satisfy the query, and avoid scanning
every row in the table.
We can create the same index using the following SQL. The command
specifies the name of the index (IDX_UnitPrice), the table name
(Products), and the column to index (UnitPrice).
CREATE INDEX [IDX_UnitPrice] ON Products (UnitPrice)
Index Works
The database takes the columns specified in a CREATE INDEX
command and sorts the values into a special data structure known as a
B-tree. A B-tree structure supports fast searches with a minimum
amount of disk reads, allowing the database engine to quickly find the
starting and stopping points for the query we are using.
Conceptually, we may think of an index as shown in the diagram
below. On the left, each index entry contains the index key (UnitPrice).
Each entry also includes a reference(which points) to the table rows
which share that particular value and from which we can retrieve the
required information.

66

DATABASE MANAGEMENT
SYSTEM

Much like the index in the back of a book helps us to find keywords
quickly, so the database is able to quickly narrow the number of records
it must examine to a minimum by using the sorted list of UnitPrice
values stored in the index. We have avoided a table scan to fetch the
query results. Given this sketch of how indexes work, lets examine
some of the scenarios where indexes offer a benefit.
Review & Self Assessment Question

1) What does SQL stand for?
2) What SQL statement is used to delete table “Student”?
3) How can you insert a new record in table?
4) Explain the use of Grant and Revoke Commands?
5) What are Transaction Control Language Commands?

Further Readings
Database Management system by Korth
Database Management system by Navathe
Database Management system by P G Gill
Database Management system by A Leon

67

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

UNIT-5 RELATIONAL
DATABASE DESIGN AND

NORMALIZATION

Contents
 Introduction

 Informal Design Guidelines for Relational Schemas

 Functional Dependencies

 Multi-valued Dependencies

 Relational Database

 Normalization

 1NF

 2NF

 3NF

 BCNF

 Review & self assessment Question

 Further Readings

Introduction
When designing a database, you have to make decisions regarding how
best to take some system in the real world and model it in a database.
This consists of deciding which tables to create, what columns they will
contain, as well as the relationships between the tables. While it would
be nice if this process was totally intuitive and obvious, or even better
automated, this is simply not the case. A well-designed database takes
time and effort to conceive, build and refine.
The benefits of a database that has been designed according to the
relational model are numerous. Some of them are:
• Data entry, updates and deletions will be efficient.
• Data retrieval, summarization and reporting will also be efficient.
• Since the database follows a well-formulated model, it behaves
predictably.
• Since much of the information is stored in the database rather than in
the application, the database is somewhat self-documenting.
• Changes to the database schema are easy to make.

68

DATABASE MANAGEMENT
SYSTEM

The objective of this chapter is to explain the basic principles behind
relational database design and demonstrate how to apply these
principles when designing a database.
Informal Design Guidelines for Relational Schemas
We discuss four informal measures of quality for relation schema
design in this section:
• Semantics of the attributes
• Reducing the redundant values in tuples
• Reducing the null values in tuples
• Disallowing the possibility of generating spurious tuples
Semantics of the attributes
The semantics, specifies how to interpret the attribute values stored in a
tuple of the relation-in other words, how the attribute values in a tuple
relate to one another. If the conceptual design is done carefully,
followed by a systematic mapping into relations, most of the semantics
will have been accounted for and the resulting design should have a
clear meaning.
Design a relation schema so that it is easy to explain its meaning. Do
not combine attributes from multiple entity types and relationship types
into a single relation. Intuitively, if a relation schema corresponds to
one entity type or one relation
Reducing the redundant values in tuples
Storing the Same information redundantly, that is, in more than one
place within a database, can lead to several problems:
Redundant Storage: Some information is stored repeatedly.
Update Anomalies: If one copy of such repeated data is updated, an
inconsistency is created unless all copies are similarly updated.
Insertion Anomalies: It may not be possible to store certain information
unless some other, unrelated, information is stored as well.
Deletion Anomalies: It may not be possible to delete certain
information without losing some other, unrelated, information as well.
Design the base relation schemas so that no insertion, deletion, or
modification anomalies are present in the relations. If any anomalies are
present, note them clearly and make sure that the programs that update
the database will operate correctly.

Figure 5.1 An Instance of Hourly_Emps Relation

Reducing the null values in tuples
It is worth considering whether the use of null values can address some
of these problems. As we will see in the context of our example, they

69

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

cannot provide a complete solution, but they can provide some help. In
this chapter, we do not discuss the use of null values beyond this one
example. Consider the example Hourly_Elmps relation. Clearly, null
values cannot help eliminate redundant storage or update anomalies. It
appears that they can address insertion and deletion anomalies. For
instance, to deal with the insertion anomaly example, we can insert an
employee tuple with null values in the hourly wage field. However, null
values cannot address all insertion anomalies. For example, we cannot
record the hourly wage for a rating unless there is an employee with
that rating, because we cannot store a null value in the ssn field, which
is a primary key field.
Similarly, to deal with the deletion anomaly example, we might
consider storing a tuple with null values in all fields except rating and
hourly_wages if the last tuple with a given rating would otherwise be
deleted. However, this solution does not work because it requires the
8871, value to be null, and primary key fields cannot be null. Thus, null
values do not provide a general solution to the problems of redundancy,
even though they can help in some cases.
Decompositions
Intuitively, redundancy arises when a relational schema forces an
association between attributes that is not natural. Functional
dependencies can 'be used to identify such situations and suggest
refinements to the schema. The essential idea is that many problems
arising from redundancy can be addressed by replacing a relation 'with
a collection of smaller relations. A. decomposition of a relation schema
consists of replacing the relation schema by two (or more) relation
schema that each contain a subset of the attributes of R and together
include all attributes in R. Intuitively, we want to store the information
in any given instance of R by storing projections of the instance. This
section examines the use of decompositions through several examples.
we can decompose Hourly_Emps into two relations:
Hourly_Emps2(ssn,name,lot,rating_hours_worked)Wages (rating,
hourly_wages)
The instances of these relations are shown in Figure 5.2 corresponding
to instance shown in figure 5.1.

Figure 5.2 Instance of Hourly_Emps2 and Wages

70

DATABASE MANAGEMENT
SYSTEM

Note that we can easily record the hourly wage for any rating simply by
adding a tuple to Wages, even if no employee with that rating appears
in the current instance of Hourly_Emps. Changing the wage associated
with a rating involves updating a single Wages tuple. This is more
efficient than updating several tuples (as in the original design), and it
eliminates the potential for inconsistency.
 Disallowing the possibility of generating spurious
tuples
Design relation schemas so that they can be joined with equality
conditions on attributes that are either primary keys or foreign keys in a
way that guarantees that no spurious tuples are generated. Avoid
relations that contain matching attributes that are not (foreign key,
primary key) combinations, because joining on such attributes may
produce spurious tuples.
Functional Dependencies
For our discussion on functional dependencies assume that a relational
schema has attributes (A, B, C... Z) and that the whole database is
described by a single universal relation called R = (A, B, C, ..., Z). This
assumption means that every attribute in the database has a unique
name.
A functional dependency is a property of the semantics of the attributes
in a relation. The semantics indicate how attributes relate to one
another, and specify the functional dependencies between attributes.
When a functional dependency is present, the dependency is specified
as a constraint between the attributes.
Consider a relation with attributes A and B, where attribute B is
functionally dependent on attribute A. If we know the value of A and
we examine the relation that holds this dependency, we will find only
one value of B in all of the tuples that have a given value of A, at any
moment in time. Note however, that for a given value of B there may
be several different values of A.

In the figure5.3 above, A is the determinant of B and B is the
consequent of A. The determinant of a functional dependency is the
attribute or group of attributes on the left-hand side of the arrow in the
functional dependency. The consequent of a fd is the attribute or group
of attributes on the right-hand side of the arrow.
Identifying Functional Dependencies

71

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

Figure 5.4 Relational Schema

The functional dependency staff# position clearly holds on this relation
instance. However, the reverse functional dependency position ¨ staff#
clearly does not hold.
The relationship between staff# and position is 1:1 – for each staff
member there is only one position. On the other hand, the relationship
between position and staff# is 1:M – there are several staff numbers
associated with a given position.

Figure 5.5

For the purposes of normalization we are interested in identifying
functional dependencies between attributes of a relation that have a 1:1
relationship.

72

DATABASE MANAGEMENT
SYSTEM

When identifying Fds between attributes in a relation it is important to
distinguish clearly between the values held by an attribute at a given
point in time and the set of all possible values that an attributes may
hold at different times.
In other words, a functional dependency is a property of a relational
schema (its intension) and not a property of a particular instance of the
schema (extension).
The reason that we need to identify Fds that hold for all possible values
for attributes of a relation is that these represent the types of integrity
constraints that we need to identify. Such constraints indicate the
limitations on the values that a relation can legitimately assume. In
other words, they identify the legal instances which are possible.
Let’s identify the functional dependencies that hold using the relation
schema
STAFFBRANCH
In order to identify the time invariant Fds, we need to clearly
understand the semantics of the various attributes in each of the relation
schemas in question.
For example, if we know that a staff member’s position and the branch
at which they are located determines their salary. There is no way of
knowing this constraint unless you are familiar with the enterprise, but
this is what the requirements analysis phase and the conceptual design
phase are all about!
staff# ->sname, position, salary, branch#, baddress
branch# ->baddress
baddress –>branch#
branch#, position->salary
baddress, position ->salary
Trivial Functional Dependencies
As well as identifying Fds which hold for all possible values of the
attributes involved in the fd, we also want to ignore trivial functional
dependencies. A functional dependency is trivial if, the consequent is a
subset of the determinant. In other words, it is impossible for it not to
be satisfied.
Example: Using the relation instances on page 6, the trivial
dependencies include:
{ staff#, sname} -> sname
{ staff#, sname} -> staff#
Although trivial Fds are valid, they offer no additional information
about integrity constraints for the relation. As far as normalization is
concerned, trivial Fds are ignored.
Inference Rules for Functional Dependencies
We’ll denote as F, the set of functional dependencies that are specified
on a relational schema R.

73

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

Typically, the schema designer specifies the Fds that are semantically
obvious; usually however, numerous other Fds hold in all legal relation
instances that satisfy the dependencies in F.
These additional Fds that hold are those Fds which can be inferred or
deduced from the Fds in F.
The set of all functional dependencies implied by a set of functional
dependencies F is called the closure of F and is denoted F+.
The notation: F X->Y denotes that the functional dependency X ->Y
is implied by the set of Fds F.
Formally, F+={X->Y | F X-> Y}
A set of inference rules is required to infer the set of Fds in F+.
For example, if I tell you that Kristi is older than Debi and that Debi is
older than Traci, you are able to infer that Kristi is older than Traci.
How did you make this inference?
Without thinking about it or maybe knowing about it, you utilized a
transitivity rule to allow you to make this inference. The set of all Fds
that are implied by a given set S of Fds is called the closure of S,
written S+. Clearly we need an algorithm that will allow us to compute
S+ from S. You know the first attack on this problem appeared in a
paper by Armstrong which gives a set of inference rules. The following
are the six well-known inference rules that apply to functional
dependencies.

The first three of these rules (IR1-IR3) are known as Armstrong’s
Axioms and constitute a necessary and sufficient set of inference rules
for generating the closure of a set of functional dependencies. These
rules can be stated in a variety of equivalent ways. Each of these rules
can be directly proved from the definition of functional dependency.
Moreover the rules are complete, in the sense that, given a set S of Fds,
all Fds implied by S can be derived from S using the rules. The other
rules are derived from these three rules.
Given R = (A, B, C, D, E, F, G, H, I, J) and
F = {AB->E, AG->J, BE->I, E->G, GI->H}
Does F AB->GH

74

DATABASE MANAGEMENT
SYSTEM

Proof
1. AB->E, given in F
2. AB->AB, reflexive rule IR1
3. AB->B, projective rule IR4 from step 2
4. AB->BE, additive rule IR5 from steps 1 and 3
5. BE->I, given in F
6. AB->I, transitive rule IR3 from steps 4 and 5
7. E->G, given in F
8. AB->G, transitive rule IR3 from steps 1 and 7
9. AB->GI, additive rule IR5 from steps 6 and 8
10. GI->H, given in F
11. AB->H, transitive rule IR3 from steps 9 and 10
12. AB->GH, additive rule IR5 from steps 8 and 11 – proven
Irreducible sets of dependencies
Let S1 and S2 be two sets of Fds, if every FD implied by S1 is implied
by S2- i.e.; if S1+ is a subset of S2+-we say that S2 is a cover for
S1+(Cover here means equivalent set).
What this means is that if the DBMS enforces the Fds in S2, then it will
automatically be enforcing the Fds in S1.
Next if S2 is a cover for S1 and S1 is a cover for S2- i.e.; if S1+=S2+ -
we say that S1 and S2 are equivalent, clearly, if s1 and S2 are
equivalent, then if the DBMS enforces the Fds in S2 it will
automatically be enforcing the Fds in S1, And vice versa.
Now we define a set of Fds to be irreducible(Usually called minimal in
the literature) if and only if it satisfies the following three properties
1 - The right hand side (the dependent) of every Fds in S involves just
one attribute (that is, it is singleton set)
2 -The left hand side (determinant) of every in S is irreducible in turn-
meaning that no attribute can be discarded from the determinant
without changing the closure S+(that is, without converting S into some
set not equivalent to S). We will say that such an Fd is left irreducible.
3. No Fd in S can be discarded from S without changing the closure
S+(That is, without converting s into some set not equivalent to S)
Now we will work out the things in detail.
Relation R {A,B,C,D,E,F} satisfies the following Fds
AB->C
C ->A
BC->D
ACD->B
BE->C
CE->FA
CF->VD
D->EF
Find an irreducible equivalent for this set of Fds?

75

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

Puzzled! The solution is simple. Let us find the solution for the above.
1. AB->C
2. C->A
3. BC->D
4. ACD->B
5. BE->C
6. CE->A
7. CE->F
8. CF->B
9. CF->D
10. D->E
11. D->F
Now:
• 2 implies 6, so we can drop 6
• 8 implies CF->BC (By augmentation), by which 3 implies CF->D (By
Transitivity), so we can drop 10.
• 8 implies ACF->AB (By augmentation), and 11 implies ACD->ACF
(By augmentation), and so ACD->AB (By Transitivity), and so ACD-
>B(By
Decomposition), so we can drop 4
No further reductions are possible, and so we are left with the following
irreducible set:
AB->C
C->A
BC->D
BE->C
CE->F
CF->B
D->E
D->F
Alternatively:
• 2 implies CD->ACD (By Composition), which with 4 implies CD-
>BE (By Transitivity), so we can replace 4 CD->B
• 2 implies 6, so we can drop 6(as before)
n2 and 10 implies CF-> AD (By composition), which implies CF-
>ADC (By
Augmentation), which with (the original) 4 implies CF->B(By
Transitivity), So we can drop 8.
No further reductions are possible, and so we are left with following
irreducible set:
AB->C
C ->A
BC ->D
CD ->B

76

DATABASE MANAGEMENT
SYSTEM

BE->C
CE->F
CF->D
D->E
D->F
Observe, therefore, that there are two distinct irreducible equivalence
for the original set of Fds.
Multi-valued Dependencies
The multivalued dependency relates to the problem when more than
one multivalued attributes exist. Consider the following relation that
represents an entity employee that has one mutlivalued attribute proj:
emp (e#, dept, salary, proj)
We have so far considered normalization based on functional
dependencies; dependencies that apply only to single-valued facts. For
example, e# ¨dept implies only one dept value for each value of e#.
Not all information in a database is single-valued, for example, proj in
an employee relation may be the list of all projects that the employee is
currently working on. Although e# determines the list of all projects
that an employee is working on e# ¨proj, is not a functional
dependency.
So far we have dealt with multivalued facts about an entity by having a
separate relation for that multivalue attribute and then inserting a tuple
for each value of that fact. This resulted in composite keys since the
multivalued fact must form part of the key. In none of our examples so
far have we dealt with an entity having more than one multivalued
attribute in one relation. We do so now.
The fourth and fifth normal forms deal with multivalued dependencies.
The 4th and 5th normal forms are discussed in the lecture that deals with
normalization. We discuss the following example to illustrate the
concept of multivalued dependency.
programmer (emp_name, qualifications, languages)
The above relation includes two multivalued attributes of entity
programmer; qualifications and languages. There are no functional
dependencies. The attributes qualifications and languages are assumed
independent of each other. If we were to consider qualifications and
languages separate entities, we would have two relationships (one
between employees and qualifications and the other between employees
and programming languages). Both the above relationships are many-
to-many i.e. one programmer could have several qualifications and may
know several programming languages. Also one qualification may be
obtained by several programmers
and one programming language may be known to many programmers.
Suppose a programmer has several qualifications (B.Sc, Dip. Comp. Sc,
etc) and is proficient in several programming languages; how should
this information be represented? There are several possibilities.

77

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

Figure 5.6

Other variations are possible (we remind the reader that there is no
relationship between qualifications and programming languages). All
these variations have some disadvantages. If the information is repeated
we face the same problems of repeated information and anomalies as
we did when second or third normal form conditions are violated. If
there is no repetition, there are still some difficulties with search,
insertions and deletions. For example, the role of NULL values in the
above relations is confusing.
Also the candidate key in the above relations is (emp name,
qualifications, language) and existential integrity requires that no
NULLs be specified. These problems may be overcome by
decomposing a relation like the one above(Figure 5.6) as follows:

Figure 5.7

The basis of the above decomposition is the concept of multivalued
dependency (MVD). Functional dependency A->B relates one value of
A to one value of B while multivalued dependency A->B defines a
relationship in which a set of values of attribute B are determined by a
single value of A.
The concept of multivalued dependencies was developed to provide a
basis for decomposition of relations like the one above. Therefore if a
relation like enrolment (sno, subject#) has a relationship between sno
and subject# in which sno uniquely determines the values of subject#,
the dependence of subject# on sno is called a trivial MVD since the
relation enrolment cannot be decomposed any further. More formally, a

78

DATABASE MANAGEMENT
SYSTEM

MVDX->Y is called trivial MVD if either Y is a subset of X or X and
Y together form the relation R.
The MVD is trivial since it results in no constraints being placed on the
relation. Therefore a relation having non-trivial MVDs must have at
least three attributes; two of them multivalued. Non-trivial MVDs result
in the relation having some constraints on it since all possible
combinations of the multivalue attributes are then required to be in the
relation.
Let us now define the concept of multivalued dependency.
The multivalued dependency X->Y is said to hold for a relation R(X,
Y, Z) if for a given set of value (set of values if X is more than one
attribute) for attributes X, there is a set of (zero or more) associated
values for the set of attributes Y and the Y values depend only on X
values and have no dependence on the set of attributes Z.
In the example above, if there was some dependence between the
attributes qualifications and language, for example perhaps, the
language was related to the qualifications (perhaps the qualification was
a training certificate in a particular language), then the relation would
not have MVD and could not be decomposed into two relations as
above.
The theory of multivalued dependencies in very similar to that for
functional dependencies. Given D a set of MVDs, we may find D+, the
closure of D using a set of axioms. We do not discuss the axioms here.
Relational Database
Relational database tables, whether they are derived from ER or UML
models, sometimes suffer from some rather serious problems in terms
of

Figure 5.8 Single table database

performance, integrity and maintainability. For example, when the
entire database is defined as a single large table, it can result in a large
amount of redundant data and lengthy searches for just a small number
of target rows. It can also result in long and expensive updates, and

79

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

deletions in particular can result in the elimination of useful data as an
unwanted side effect.
Such a situation is shown in Figure 5.8, where products, salespersons,
customers, and orders are all stored in a single table called Sales. In this
table, we see that certain product and customer information is stored
redundantly, wasting storage space. Certain queries, such as “Which
customers ordered vacuum cleaners last month?” would require a
search of the entire table. Also, updates such as changing the address of
the customer Dave Bachmann would require changing many rows.
Finally, deleting an order by a valued customer such as Qiang Zhu
(who bought an expensive computer), if that is his only outstanding
order, deletes the only copy of his address and credit rating as a side
effect.
Such information may be difficult (or sometimes impossible) to
recover. These problems also occur for situations in which the database
has already been set up as a collection of many tables, but some of the
tables are still too large.
If we had a method of breaking up such a large table into smaller tables
so that these types of problems would be eliminated, the database
would be much more efficient and reliable. Classes of relational
database schemes or table definitions, called normal forms, are
commonly used to accomplish this goal. The creation of a normal form
database table is called normalization. Normalization is accomplished
by analyzing the interdependencies among individual attributes
associated with those tables and taking projections (subsets of columns)
of larger tables to form smaller ones.
Normalization is a formal process for determining which fields belong
in which tables in a relational database. Normalization follows a set of
rules worked out at the time relational databases were born. A
normalized relational database provides several benefits:
• Elimination of redundant data storage.
• Close modeling of real world entities, processes, and their
relationships.
• Structuring of data so that the model is flexible.
• Normalization ensures that you get the benefits relational databases
offer. Time spent learning about normalization will begin paying for
itself immediately. Let us first review the basic normal forms, which
have been well established in the relational database literature and in
practice.
First Normal Form
Definition. A table is in first normal form (1NF) if and only if all
columns contain only atomic values, that is, each column can have only
one value for each row in the table. Relational database tables, such as
the Sales table illustrated in Figure 5.9, have only atomic values for

80

DATABASE MANAGEMENT
SYSTEM

each row and for each column. Such tables are considered to be in first
normal form, the most basic level of normalized tables.
To better understand the definition for 1NF, it helps to know the
difference between a domain, an attribute, and a column. A domain is
the set of all possible values for a particular type of attribute, but may
be used for more than one attribute. For example, the domain of
people’s names is the underlying set of all possible names that could be
used for either customer-name or salesperson-name in the database
table in Figure 5.8. Each column in a relational table represents a single
attribute, but in some cases more than one column may refer to
different attributes from the same domain. When this occurs, the table
is still in 1NF because the values in the table are still atomic. In fact,
standard SQL assumes only atomic values and a relational table is by
default in 1NF.
Superkeys, Candidate Keys, and Primary Keys
A table in 1NF often suffers from data duplication, update performance,
and update integrity problems, as noted above. To understand these
issues better, however, we must define the concept of a key in the
context of normalized tables. A superkey is a set of one or more
attributes, which, when taken collectively, allows us to identify
uniquely an entity or table. Any subset of the attributes of a superkey
that is also a superkey, and not reducible to another superkey, is called
a candidate key. A primary key is selected arbitrarily from the set of
candidate keys to be used in an index for that table.

Figure 5.9 Report table

As an example, in Figure 5.9 a composite of all the attributes of the
table forms a superkey because duplicate rows are not allowed in the
relational model. Thus, a trivial superkey is formed from the composite
of all attributes in a table. Assuming that each department address
(dept_addr) in this table is single valued, we can conclude that the
composite of all attributes except dept_addr is also a superkey. Looking
at smaller and smaller composites of attributes and making realistic
assumptions about which attributes are single valued, we find that the

81

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

composite (report_no, author_id) uniquely determines all the other
attributes in the table and is therefore a superkey. However, neither
report_no nor author_id alone can determine a row uniquely, and the
composite of these two attributes cannot be reduced and still be a
superkey. Thus, the composite (report_no, author_id) becomes a
candidate key. Since it is the only candidate key in this table, it also
becomes the primary key.
A table can have more than one candidate key. If, for example, in
Figure 5.9, we had an additional column for author_ssn, and the
composite of report_no and author_ssn uniquely determine all the other
attributes of the table, then both (report_no, author_id) and (report_no,
author_ssn) would be candidate keys. The primary key would then be
an arbitrary choice between these two candidate keys.
Second Normal Form
To explain the concept of second normal form (2NF) and higher, we
introduce the concept of functional dependence. The property of one or
more attributes that uniquely determine the value of one or more other
attributes is called functional dependence.
Given a table (R), a set of attributes (B) is functionally dependent on
another set of attributes (A) if, at each instant of time, each A value is
associated with only one B value.
Such a functional dependence is denoted by A -> B. In the preceding
example from Figure 5.9, let us assume we are given the following
functional dependencies for the table report:
report: report_no -> editor, dept_no
dept_no -> dept_name, dept_addr
author_id -> author_name, author_addr
Definition:A table is in second normal form (2NF) if and only if it is in
1NF and every nonkey attribute is fully dependent on the primary key.
An attribute is fully dependent on the primary key if it is on the right
side of an FD for which the left side is either the primary key itself or
something that can be derived from the primary key using the
transitivity of FDs.
An example of a transitive FD in report is the following:
report_no -> dept_no
dept_no -> dept_name
Therefore we can derive the FD (report_no -> dept_name), since
dept_name is transitively dependent on report_no.
Continuing our example, the composite key in Figure 5.9, (report_no,
author_id), is the only candidate key and is therefore the primary key.
However, there exists one FD (dept_no -> dept_name, dept_addr) that
has no component of the primary key on the left side, and two FDs
(report_no -> editor, dept_no and author_id -> author_name,
author_addr) that contain one component of the primary key on the left

82

DATABASE MANAGEMENT
SYSTEM

side, but not both components. As such, report does not satisfy the
condition for 2NF for any of the FDs.
Consider the disadvantages of 1NF in table report. Report_no, editor,
and dept_no are duplicated for each author of the report. Therefore, if
the editor of the report changes, for example, several rows must be
updated. This is known as the update anomaly, and it represents a
potential degradation of performance due to the redundant updating. If
a new editor is to be added to the table, it can only be done if the new
editor is editing a report: both the report number and editor number
must be known to add a row to the table, because you cannot have a
primary key with a null value in most relational databases.
This is known as the insert anomaly. Finally, if a report is withdrawn,
all rows associated with that report must be deleted. This has the side
effect of deleting the information that associates an author_id with
author_name and author_addr. Deletion side effects of this nature are
known as delete anomalies. They represent a potential loss of integrity,
because the only way the data can be restored is to find the data
somewhere outside the database and insert it back into the database. All
three of these anomalies represent problems to database designers, but
the delete anomaly is by far the most serious because you might lose
data that cannot be recovered. These disadvantages can be overcome by
transforming the 1NF table into two or more 2NF tables by using the
projection operator on the subset of the attributes of the 1NF table. In
this example we project report over report_no, editor, dept_no,
dept_name, and dept_addr to form report1; and project report over
author_id, author_name, and author_addr to form report2; and finally
project report over report_no and author_id to form report3. The
projection of report into three smaller tables has preserved the FDs and
the association between report_no and author_no that was important in
the original table. Data for the three tables is shown in Figure 5.10. The
FDs for these 2NF tables are:
report1: report_no -> editor, dept_no
dept_no -> dept_name, dept_addr
report2: author_id -> author_name, author_addr
report3: report_no, author_id is a candidate key (no FDs)

We now have three tables that satisfy the conditions for 2NF, and we
have eliminated the worst problems of 1NF, especially integrity (the
delete anomaly). First, editor, dept_no, dept_name, and dept_addr are
no longer duplicated for each author of a report. Second, an editor
change results in only an update to one row for report1. And third, the
most important, the deletion of the report does not have the side effect
of deleting the author information.

83

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

Figure 5.10 2NF tables

Not all performance degradation is eliminated, however; report_no is
still duplicated for each author, and deletion of a report requires updates
to two tables (report1 and report3) instead of one. However, these are
minor problems compared to those in the 1NF table report. Note that
these three report tables in 2NF could have been generated directly
from an ER (or UML) diagram that equivalently modeled this situation
with entities Author and Report and a many-to-many relationship
between them.
Third Normal Form
The 2NF tables we established in the previous section represent a
significant improvement over 1NF tables. However, they still suffer
from

Figure 5.11 3NF tables

84

DATABASE MANAGEMENT
SYSTEM

the same types of anomalies as the 1NF tables although for different
reasons associated with transitive dependencies. If a transitive
(functional) dependency exists in a table, it means that two separate
facts are represented in that table, one fact for each functional
dependency involving a different left side. For example, if we delete a
report from the database, which involves deleting the appropriate rows
from report1 and report3 (see Figure 5.10), we have the side effect of
deleting the association between dept_no, dept_name, and dept_addr as
well. If we could project table report1 over report_no, editor, and
dept_no to form table report11, and project report1 over dept_no,
dept_name, and dept_addr to form table report12, we could eliminate
this problem.
Example tables for report11 and report12 are shown in Figure 5.11.
Definition: A table is in third normal form (3NF) if and only if for
every nontrivial functional dependency X->A, where X and A are either
simple or composite attributes, one of two conditions must hold. Either
attribute X is a superkey, or attribute A is a member of a candidate key.
If attribute A is a member of a candidate key, A is called a prime
attribute. Note: a trivial FD is of the form YZ->Z. In the preceding
example, after projecting report1 into report11 and report12 to
eliminate the transitive dependency report_no -> dept_no ->
dept_name, dept_addr, we have the following 3NF tables and their
functional dependencies (and example data in Figure 5.11):
report11: report_no -> editor, dept_no
report12: dept_no -> dept_name, dept_addr
report2: author_id -> author_name, author_addr
report3: report_no, author_id is a candidate key (no FDs)
Boyce-Codd Normal Form
3NF, which eliminates most of the anomalies known in databases
today, is the most common standard for normalization in commercial
databases and CASE tools. The few remaining anomalies can be
eliminated by the Boyce-Codd normal form (BCNF). BCNF is
considered to be a strong variation of 3NF.
Definition. A table R is in Boyce-Codd normal form (BCNF) if for
every nontrivial FD
X->A, X is a super key.
BCNF is a stronger form of normalization than 3NF because it
eliminates the second condition for 3NF, which allowed the right side
of the FD to be a prime attribute. Thus, every left side of an FD in a
table must be a super key. Every table that is BCNF is also 3NF, 2NF,
and 1NF, by the previous definitions.
The following example shows a 3NF table that is not BCNF. Such
tables have delete anomalies similar to those in the lower normal forms.
Assertion1. For a given team, each employee is directed by only one
leader. A team may be directed by more than one leader.

85

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

emp_name, team_name -> leader_name
Assertion 2. Each leader directs only one team.
leader_name -> team_name
This table is 3NF with a composite candidate key emp_id, team_id:
The team table has the following delete anomaly: if Sutton drops out of
the Condors team, then we have no record of Bachmann leading the
Condors team. As shown by Date [1999], this type of anomaly cannot
have a lossless decomposition and preserve all FDs.
A lossless decomposition requires that when you decompose the table
into two smaller tables by projecting the original table over two
overlapping subsets of the scheme, the natural join of those subset
tables must result in the original table without any extra unwanted
rows. The simplest way to avoid the delete anomaly for this kind of
situation is to create a separate table for each of the two assertions.
These two tables are partially redundant, enough so to avoid the delete
anomaly. This decomposition is lossless (trivially) and preserves
functional dependencies, but it also degrades update performance due
to redundancy, and necessitates additional storage space. The trade-off
is often worth it because the delete anomaly is avoided.
Lossless-Join Decomposition
In this chapter so far we have normalized a number of relations by
decomposing them. We decomposed a relation intuitively. We need a
better basis for deciding decompositions since intuition may not always
be correct. We illustrate how a careless decomposition may lead to
problems including loss of information.
Consider the following relation
enrol (sno, cno, date-enrolled, room-No., instructor)
Suppose we decompose the above relation into two relations enrol1 and
enrol2 as follows
enrol1 (sno, cno, date-enrolled)
enrol2 (date-enrolled, room-No., instructor)
There are problems with this decomposition but we wish to focus on
one aspect at the moment. Let an instance of the relation enrol be

and let the decomposed relations enrol1 and enrol2 be:

86

DATABASE MANAGEMENT
SYSTEM

All the information that was in the relation enrol appears to be still
available in enrol1 and enrol2 but this is not so. Suppose, we wanted to
retrieve the student numbers of all students taking a course from
Wilson, we would need to join enrol1 and enrol2. The join would have
11 tuples as follows:

(add further tuples ...)
The join contains a number of spurious tuples that were not in the
original relation Enrol. Because of these additional tuples, we have lost
the information about which students take courses from WILSON.
(Yes, we have more tuples but less information because we are unable
to say with certainty who is taking courses from WILSON). Such
decompositions are called lossy decompositions. A nonloss or lossless
decomposition is that which guarantees that the join will result in
exactly the same relation as was decomposed. One might think that
there might be other ways of recovering the original relation from the
decomposed relations but, sadly, no other operators can recover the
original relation if the join does not (why?).

87

RELATIONAL DATABASE
DESIGN AND

NORMALIZATION

NOTES

We need to analyse why some decompositions are lossy. The common
attribute in above decompositions was Date-enrolled. The common
attribute is the glue that gives us the ability to find the relationships
between different relations by joining the relations together. If the
common attribute is not unique, the relationship information is not
preserved. If each tuple had a unique value of Date-enrolled, the
problem of losing information would not have existed. The problem
arises because several enrolments may take place on the same date.
A decomposition of a relation R into relations R1, R2,…..,Rn is called a
lossless-join decomposition (with respect to FDs F) if the relation R is
always the natural join of the relations R1, R2,…..,Rn . It should be
noted that natural join is the only way to recover the relation from the
decomposed relations. There is no other set of operators that can
recover the relation if the join cannot. Furthermore, it should be noted
when the decomposed relations R1, R2,…..,Rn are obtained by
projecting on the relation R, for example R1 by projection Ð1(R) , the
relation R1 may not always be precisely equal to the projection since
the relation R1 might have additional tuples called the dangling tuples.
It is not difficult to test whether a given decomposition is lossless-join
given a set of functional dependencies F. We consider the simple case
of a relation R being decomposed into R1 and R2 . If the decomposition
is lossless-join, then one of the following two conditions must hold

Dependency Preservation Decomposition
It is clear that decomposition must be lossless so that we do not lose
any information from the relation that is decomposed. Dependency
preservation is another important requirement since a dependency is a
constraint on the database and if x->y holds than we know that the two
(sets) attributes are closely related and it would be useful if both
attributes appeared in the same relation so that the dependency can be
checked easily.
Let us consider a relation R(A, B, C, D) that has the dependencies F
that include the following:
A->B
A->C
etc
If we decompose the above relation into R1(A, B) and R2(B, C, D) the
dependency A->C cannot be checked (or preserved) by looking at only
one relation. It is desirable that decompositions be such that each
dependency in F may be checked by looking at only one relation and
that no joins need be computed for checking dependencies. In some
cases, it may not be possible to preserve each and every dependency in

88

DATABASE MANAGEMENT
SYSTEM

F but as long as the dependencies that are preserved are equivalent to F,
it should be sufficient.
Let F be the dependencies on a relation R which is decomposed in
relations
R1, R2,…..,Rn.
We can partition the dependencies given by F such that F1,F2,…..FN.
FN are dependencies that only involve attributes from relations R1,
R2,…..,Rn respectively. If the union of dependencies Fi imply all the
dependencies in F, then we say that the decomposition has preserved
dependencies, otherwise not.
If the decomposition does not preserve the dependencies F, then the
decomposed relations may contain relations that do not satisfy F or the
updates to the decomposed relations may require a join to check that
the constraints implied by the dependencies still hold.
Consider the following relation
sub(sno, instructor, office)
We may wish to decompose the above relation to remove the transitive
dependency of
office on sno. A possible decomposition is
S1(sno, instructor)
S2(sno, office)
The relations are now in 3NF but the dependency instructor -> office
cannot be verified by looking at one relation; a join of S1 and S2 is
needed. In the above decomposition, it is quite possible to have more
than one office number for one instructor although the functional
dependency instructor-> office does not allow it.
Review & Self Assessment Question

1. What are the various guidelines that need to be taken care of while
designing a relational schema?

2. Describe update, insert and delete anomalies with the help of
examples.

3. Define functional dependencies?
4. Explain the inference rules?
5. Explain the concept of multi valued dependency?
6. What does the term un-normalized relation refer?
Further Readings

Database Management system by Korth
Database Management system by Navathe
Database Management system by P G Gill
Database Management system by A Leon

89

Query Processing
Notes

UNIT- 6 QUERY PROCESSING

Contents

 Query Optimization

 Heuristic in Query Optimization

 Basic Algorithm for Executing Optimization

 Simple Hash Join Method

 Aggregation

 Review & Self Assessment Question

 Further Readings

Introduction
In most database systems, queries are posed in a non-procedural
language like SQL and as we have noted earlier such queries do not
involve any reference to access paths or the order of evaluation of
operations. The query processing of such queries by a DBMS usually
involves the following four phases:

1. Parsing
2. Optimization
3. Code Generation
4. Execution

The parser basically checks the query for correct syntax and translates it
into a conventional parse-tree (often called a query-tree) or some other
internal representation.
If the parser returns with no errors, and the query uses some user-
defined views, it is necessary to expand the query by making
appropriate substitutions for the views. It is then necessary to check the
query for semantic correctness by consulting the system catalogues and
check for semantic errors and type compatibility in both expressions
and predicate comparisons. The optimizer is then invoked with the
internal representation of the query as input so that a query plan or
execution plan may be devised for retrieving the information that is
required. The optimizer carries out a number of operations. It relates the
symbolic names in the query to data base objects and checks their
existence and checks if the user is authorized to perform the operations
that the query specifies.
In formulating the plans, the query optimizer obtains relevant
information from the metadata that the system maintains and attempts
to model the estimated costs of performing many alternative query
plans and then selects the best amongst them. The metadata or system

90

DATABASE MANAGEMENT
SYSTEM

catalog consists of descriptions of all the databases that a DBMS
maintains. Often, the query optimizer would at least retrieve the
following information:
1. Cardinality of each relation of interest.
2. The number of pages in each relation of interest.
3. The number of distinct keys in each index of interest.
4. The number of pages in each index of interest.
The above information and perhaps other information will be used by
the optimizer in modeling the cost estimation for each alternative query
plan.
Considerable other information is normally available in the system
catalog:
1. Name of each relation and all its attributes and their domains.
2. Information about the primary key and foreign keys of each relation.
3. Descriptions of views.
4. Descriptions of storage structures.
5. Other information including information about ownership and
security issues.
Often this information is updated only periodically and not at every
update/insert/delete. Also, the system catalog is often stored as a
relational database itself making it easy to query the catalog if a user is
authorized to do so.
Information in the catalog is very important of course since query
processing makes use of this information extensively. Therefore more
comprehensive and more accurate information a database maintains the
better optimization it can carry out but maintaining more
comprehensive and more accurate information also introduces
additional overheads and a good balance therefore must be found.
The catalog information is also used by the optimizer in access path
selection. These statistics are often updated only periodically and are
therefore not always accurate.
An important part of the optimizer is the component that consults the
metadata stored in the database to obtain statistics about the referenced
relations and the access paths available on them. These are used to
determine the most efficient order of the relational operations and the
most efficient access paths. The order of operations and the access
paths are selected from a number of alternate possibilities that normally
exist so that the cost of query processing is minimized. More details of
query optimization are presented in the next section.
If the optimizer finds no errors and outputs an execution plan, the code
generator is then invoked. The execution plan is used by the code
generator to generate the machine language code and any associated
data structures. This code may now be stored if the code is likely to be
executed more than once. To execute the code, the machine transfers
control to the code which is then executed.

91

Query Processing
Notes

Query Optimization
Before query optimization is carried out, one would of course need to
decide what needs to be optimized. The goal of achieving efficiency
itself may be different in different situations. For example, one may
wish to minimize the processing time but in many situations one would
wish to minimize the response time. In other situations, one may wish
to minimize the I/O, network time, memory used or some sort of
combination of these e.g. total resources used. Generally, a query
processing algorithm A will be considered more efficient than an
algorithm B if the measure of cost being minimized for processing the
same query given the same resources using A is generally less than that
for B.
To illustrate the desirability of optimization, we now present an
example of a simple query that may be processed in several different
ways. The following query retrieves subject names and instructor
names of all current subjects in Computer Science that John Smith is
enrolled in.
SELECT subject.name, instructor FROM student, enrolment, subject
WHERE student.student_id=enrolment.student_id AND
 subject.subject_id enrolment.subject_id
AND subject.department = `Computer Science' AND student.name =
`John Smith'
To process the above query, two joins and two restrictions need to be
performed. There are a number of different ways these may be
performed including the following:
1. Join the relations student and enrolment, join the result with subject
and then do the restrictions.
2. Join the relations student and enrolment, do the restrictions, join the
result with subject
3. Do the restrictions, join the relations student and enrolment, join the
result with subject
4. Join the relations enrolment and subject, join the result with student
and then do the restrictions.
Here we are talking about the cost estimates. Before we attempt to
compare the costs of the above four alternatives, it is necessary to
understand that estimating the cost of a plan is often non- trivial. Since
normally a database is disk-resident, often the cost of reading and
writing to disk dominates the cost of processing a query. We would
therefore estimate the cost of processing a query in terms of disk
accesses or block accesses.
Estimating the number of block accesses to process even a simple query
is not necessarily straight forward since it would depend on how the
data is stored and which, if any, indexes are available. In some database
systems, relations are stored in packed form, that is, each block only
has tuples of the same relation while other systems may store tuples

92

DATABASE MANAGEMENT
SYSTEM

from several relations in each block making it much more expensive to
scan all of a relation.
Let us now compare the costs of the above four options. Since exact
cost computations are difficult, we will use simple estimates of the cost.
We consider a situation where the enrolment database consists of
10,000 tuples in the relation student, 50,000 in enrolment, and 1,000 in
the relation subject. For simplicity, let us assume that the relations
student and subject have tuples of similar size of around 100 bytes each
and therefore and we can accommodate 10 tuples per block if the block
is assumed to be 1 Kbytes in size. For the relation enrolment, we
assume a tuple size of 40 bytes and thus we use a figure of 25
tuples/block. In addition, let John Smith be enrolled in 10 subjects and
let there be 20 subjects offered by Computer Science. We can now
estimate the costs of the four plans listed above.
The cost of query plan (1) above may now be computed. Let the join be
computed by reading a block of the first relation followed by a scan of
the second relation to identify matching tuples (this method is called
nested-scan and is not particularly efficient. We,will discuss the issue
of efficiency of algebraic operators in a later section). This is then
followed by the reading of the second block of the first relation
followed by a scan of the second relation and so on. The cost of R |X| S
may therefore be estimated as the number of blocks in R times the
number of blocks in S. Since the number of blocks in student is 1000
and in enrolment 2,000, the total number of blocks read in computing
the join of student and enrolment is 1000X 2000=2,000,000 block
accesses.
The result of the join is 50,000 tuples since each tuple from enrolment
matches with a tuple from student. The joined tuples will be of size
approximately 140 bytes since each tuple in the join is a tuple from
student joined with another from enrolment. Given the tuple size of 140
bytes, we can only fit 7 tuples in a block and therefore we need about
7,000 blocks to store all 50,000 joined tuples. The cost of computing
the join of this result with subject is 7000 X 100= 700,00 block
accesses. Therefore the total cost of plan (1) is approximately 2,700,000
block accesses.
To estimate the cost of plan (2), we know the cost of computing the join
of student and enrolment has been estimated above as 2,000,000 block
accesses. The result is 7000 blocks in size. Now the result of applying
the restrictions to the result of the join reduces this result to about 5-10
tuples i.e. about 1-2 blocks. The cost of this restriction is about 7000
disk accesses. Also the result of applying the restriction to the relation
subject reduces that relation to 20 tuples (2 blocks). The cost of this
restriction is about 100 block accesses. The join now only requires
about 4 block accesses. The total cost therefore is approximately
2,004,604.

93

Query Processing
Notes

To estimate the cost of plan (3), we need to estimate the size of the
results of restrictions and their cost. The cost of the restrictions is
reading the relations student and subject and writing the results. The
reading costs are 1,100 block accesses. The writing costs are very small
since the size of the results is 1 tuple for student and 20 tuples for
subject. The cost of computing the join of student and enrolment
primarily involves the cost of reading enrolment. This is 2,000 block
accesses. The result is quite small in size and therefore the cost of
writing the result back is small. The total cost of plan (3) is therefore
3,100 block accesses.
Similar estimates may be obtained for processing plan (4). We will not
estimate this cost, since the above estimates are sufficient to illustrate
that brute force method of query processing is unlikely to be efficient.
The cost can be significantly reduced if the query plan is optimized.
The issue of optimization is of course much more complex than
estimating the costs like we have done above since in the above
estimation we did not consider the various alternative access paths that
might be available to the system to access each relation.
The above cost estimates assumed that the secondary storage access
costs dominate the query processing costs. This is often a reasonable
assumption although the cost of communication is often quite important
if we are dealing with a distributed system. The cost of storage can be
important in large databases since some queries may require large
intermediate results. The cost of CPU of course is always important and
it is not uncommon for database applications to be CPU bound than I/O
bound as is normally assumed. In the present chapter we assume a
centralized system where the cost of secondary storage access is
assumed to dominate other costs although we recognize that this is not
always true. For example, system R uses
cost = page fetches + w cpu utilization
When a query is specified to a DBMS, it must choose the best way to
process it given the information it has about the database. The
optimization part of query processing generally involves the following
operations.
1. A suitable internal representation
2. Logical transformation of the query
3. Access path selection of the alternatives
4. Estimate costs and select best
Internal Representation
As noted earlier, a query posed in a query language like SQL must first
be translated to a internal representation suitable for machine
representation. Any internal query representation must be sufficiently
powerful to represent all queries in the query language (e.g. SQL). The
internal representation could be relational algebra or relational calculus
since these languages are powerful enough (they have been shown to be

94

DATABASE MANAGEMENT
SYSTEM

relationally complete by E.F. Codd) although it will be necessary to
modify them from what was discussed in an earlier chapter so that
features like Group By and aggregations may be represented. A
representation like relational algebra is procedural and therefore once
the query is represented in that representation, a sequence of operations
is clearly indicated.
Other representations are possible. These include object graph, operator
graph (or parse tree) and tableau. Further information about other
representations is available in Jarke and Koch (1984) although some
sort of tree representation appears to be most commonly used (why?).
Our discussions will assume that a query tree representation is being
used.
In such a representation, the leaf nodes of the query tree are the base
relations and the nodes correspond to relational operations.
Logical Transformations
At the beginning of this chapter we showed that the same query may be
formulated in a number of different ways that are semantically
equivalent. It is clearly desirable that all such queries be transformed
into the same query representation. To do this, we need to translate
each query to some canonical form and then simplify.
This involves transformations of the query and selection of an optimal
sequence of operations. The transformations that we discuss in this
section do not consider the physical representation of the database and
are designed to improve the efficiency of query processing whatever
access methods might be available. An example of such transformation
has already been discussed in the examples given. If a query involves
one or more joins and a restriction, it is always going to be more
efficient to carry out the restriction first since that will reduce the size
of one of the relations (assuming that the restriction applies to only one
relation) and therefore the cost of the join, often quite significantly.
Heuristic Optimization -- In the heuristic approach, the sequence of
operations in a query is reorganized so that the query execution time
improves.
Deterministic Optimization -- In the deterministic approach, cost of all
possible forms of a query are evaluated and the best one is selected.
Common Sub-expression -- In this technique, common sub expressions
in the query, if any, are recognised so as to avoid executing the same
sequence of operations more than once.
Heuristic in Query optimization
Heuristic optimization often includes making transformations to the
query tree by moving operators up and down the tree so that the
transformed tree is equivalent to the tree before the transformations.
Before we discuss these heuristics, it is necessary to discuss the
following rules governing the manipulation of relational algebraic
expressions:

95

Query Processing
Notes

1. Joins and Products are commutative. e.g.
R X S = S X R
R |X| S = S |X| R
where |X| may be a join or a natural join. The order of attributes in the
two products or joins may not be quite the same but the ordering of
attributes is not considered significant in the relational model since the
attributes are referred to by their name not by their position in the list of
attributes.
2. Restriction is commutative. e.g.

3. Joins and Products are associative. e.g.
(R X S) X T = R X (S X T)
(R |X| S) |X| T = R |X| (S |X| T)
The associativity of the above operations guarantees that we will obtain
the same results whatever be the ordering of computations of the
operations product and join. Union and intersection are also associative.
4. Cascade of Projections. e.g.

where the attributes A is a subset of the attributes B. The above
expression formalises the obvious that there is no need to take the
projection with attributes B if there is going to be another projection
which is a subset of B that follows it.
5. Cascade of restrictions. e.g.

The above expression also formalises the obvious that if there are two
restrictions, one after the other, then there is no need to carry out the
restrictions one at a time (since each will require processing a relation)
and instead both restrictions could be combined.

6. Commuting restrictions and Projections. e.g.

There is no difficulty in computing restriction with a projection since
we are then doing the restriction before the projection. However if we
wish to commute the projection and the restriction, that is possible only
if the restriction used no attributes other than those that are in the
projection.

96

DATABASE MANAGEMENT
SYSTEM

7. Commuting restrictions with Cartesian Product. In some cases, it is
possible to apply commutative law to restrictions and a product. For
example,

Or

In the above expressions we have assumed that the predicate p has only
attributes from R and the predicate q has attributes from S only.
8. Commuting restriction with a Union.
9. Commuting restriction with a Set Difference.
10. Commuting Projection with a Cartesian Product or a Join -- we
assume that the projection includes the join predicate attributes.
11. Commuting Projection with a UNION.
We now use the above rules to transform the query tree to minimize the
query cost. Since the cost is assumed to be closely related to the size of
the relations on which the operation is being carried out, one of the
primary aims of the transformations that we discuss is to reduce the size
of intermediate relations.
The basic transformations include the following:
(a) Moving restrictions down the tree as far as possible. The idea is to
carry out restrictions as early as possible. If the query involves joins as
well as restrictions, moving the restrictions down is likely to lead to
substantial savings since the relations that are joined after restrictions
are likely to be smaller (in some cases much smaller) than before
restrictions. This is clearly shown by the example that we used earlier
in this chapter to show that some query plans can be much more
expensive than others. The query plans that cost the least were those in
which the restriction was carried out first. There are of course situations
where a restriction does not reduce the relation significantly, for
example, a restriction selecting only women from a large relation of
customers or clients.
(b) Projections are executed as early as possible. In real-life databases,
a relation may have one hundred or more attributes and therefore the
size of each tuple is relatively large. Some relations can even have
attributes that are images making each tuple in such relations very
large. In such situations, if a projection is executed early and it leads to
elimination of many attributes so that the resulting relation has tuples of
much smaller size, the amount of data that needs to be read in from the
disk for the operations that follow could be reduced substantially
leading to cost savings. It should be noted that only attributes that we
need to retain from the relations are those that are either needed for the
result or those that are to be used in one of the operations that is to be
carried out on the relation.

97

Query Processing
Notes

(c) Optimal Ordering of the Joins. We have noted earlier that the join
operator is associative and therefore when a query involves more than
one join, it is necessary to find an efficient ordering for carrying out the
joins. An ordering is likely to be efficient if we carry out those joins
first that are likely to lead to small results rather than carrying out those
joins that are likely to lead to large results.
(d) Cascading restrictions and Projections. Sometimes it is convenient
to carry out more than one operations together. When restrictions and
projections have the same operand, the operations may be carried out
together thereby saving the cost of scanning the relations more than
once.
(e) Projections of projections are merged into one projection. Clearly, if
more than one projection is to be carried out on the same operand
relation, the projections should be merged and this could lead to
substantial savings since no intermediate results need to be written on
the disk and read from the disk.
(f) Combining certain restrictions and Cartesian Product to form a Join.
A query may involve a cartesian product followed by a restriction
rather than specifying a join. The optimizer should recognise this and
execute a join which is usually much cheaper to perform.
(g) Sorting is deferred as much as possible. Sorting is normally a nlogn
operation and by deferring sorting, we may need to sort a relation that
is much smaller than it would have been if the sorting was carried out
earlier.
(h) A set of operations is reorganised using commutativity and
distribution if a reorganised form is more efficient.
Basic Algorithms for Executing Query Operation
The efficiency of query processing in a relational database system
depends on the efficiency of the relational operators. Even the simplest
operations can often be executed in several different ways and the costs
of the different ways could well be quite different.
Although the join is a frequently used and the most costly operator and
therefore worthy of detailed study, we also discuss other operators to
show that careful thought is needed in efficiently carrying out the
simpler operators as well.
Selection
Let us consider the following simple query:

SELECT A
FROM R
WHERE p

The above query may involve any of a number of types of predicates.
The following list is presented by Selinger et al: [could have a query
with specifying WHERE condition in different ways]

1. attribute = value
2. attribute1 = attribute2

98

DATABASE MANAGEMENT
SYSTEM

3. attribute > value
4. attribute between value1 and value2
5. attribute IN (list of values)
6. attribute IN subquery
7. predicate expression OR predicate expression
8. predicate expression AND predicate expression

Even in the simple case of equality, two or three different approaches
may be possible depending on how the relation has been stored.
Traversing a file to find the information of interest is often called a file
scan even if the whole file is not being scanned. For example, if the
predicate involves an equality condition on a single attribute and there
is an index on that attribute, it is most efficient to search that index and
find the tuple where the attribute value is equal to the value given. That
should be very efficient since it will only require accessing the index
and then one block to access the tuple. Of course, it is possible that
there is no index on the attribute of interest or the condition in the
WHERE clause is not quite as simple as an equality condition on a
single attribute. For example, the condition might be an inequality or
specify a range. The index may still be useful if one exists but the
usefulness would depend on the condition that is posed in the WHERE
clause. In some situations it will be necessary to scan the whole relation
R to find the tuples that satisfy the given condition. This may not be so
expensive if the relation is not
so large and the tuples are stored in packed form but could be very
expensive if the relation is large and the tuples are stored such that each
block has tuples from several different relations. Another possibility is
of course that the relation R is stored as a hash file using the attribute of
interest and then again one would be able to hash on the value specified
and find the record very efficiently.
As noted above, often the condition may be a conjunction or
disjunction of several different conditions i.e. it may be like P1 AND
P2 or P1 OR P2 . Sometime such conjunctive queries can be efficiently
processed if there is a composite index based on the attributes that are
involved in the two conditions but this is an exception rather than a
rule. Often however, it is necessary to assess which one of the two or
more conditions can be processed efficiently. Perhaps one of the
conditions can be processed using an index.
As a first step then, those tuples that satisfy the condition that involves
the most efficient search (or perhaps that which retrieves the smallest
number of tuples) are retrived and the remaining conditions are then
tested on the tuples that are retrieved. Processing disjunctive queries of
course requires somewhat different techniques since in this case we are
looking at a union of all tuples that satisfy any one of the conditions
and therefore each condition will need to be processed separately. It is
therefore going to be of little concern which of the conditions is
satisfied first since all must be satisfied independently of the other. Of

99

Query Processing
Notes

course, if any one of the conditions requires a scan of the whole relation
then we can test all the conditions during the scan and retrieve all tuples
that satisfy any one or more conditions.
Projection
A projection would of course require a scan of the whole relation but if
the projection includes a candidate key of the relation then no duplicate
removal is necessary since each tuple in the projection is then
guaranteed to be unique. Of course, more often the projection would
not include any candidate key and may then have duplicates. Although
many database systems do not remove duplicates unless the user
specifies so, duplicates may be removed by sorting the projected
relation and then identifying the duplicates and eliminating them. It is
also possible to use hashing which may be desirable if the relations are
particularly large since hashing would hash identical tuples to the same
bucket and would therefore only require sorting the relations in each
bucket to find the duplicates if any.
Often of course one needs to compute a restriction and a join together.
It is then often appropriate to compute the restriction first by using the
best access paths available (e.g. an index).
Join
We assume that we wish to carry out an equi-join of two relations R
and S that are to be joined on attributes a in R and b in S. Let the
cardinality of R and S be m and n respectively. We do not count join
output costs since these are identical for all methods.
We assume „ R„ <=„ S„ . We further assume that all restrictions and
projections of R and S have already been carried out and neither R nor
S is ordered or indexed unless explicitly noted.
Because of the importance of the join operator in relational database
systems and the fact that the join operator is considerably more
expensive than operators like selection and projection, a number of
algorithms have been suggested for processing the join. The more
commonly used algorithms are:

1. The Nested Scan Method
2. The Sort-Merge algorithm
3. Hashing algorithm (hashing no good if not equi-join?)
4. Variants of hashing
5. Semi-joins
6. Filters
7. Links
8. Indexes
9. More recently, the concept of join indices has been proposed
by Valduriez (1987). Hashing methods are not good when the
join is not an equi-join.

100

DATABASE MANAGEMENT
SYSTEM

Nested Iteration
Before discussing the methods listed above, we briefly discuss the
naive nested iteration method that accesses every pair of tuples and
concatenates them if the equi-join condition (or for that matter, any
other condition) is satisfied. The cost of the naive algorithm is O(mn)
assuming that R and S both are not ordered. The cost obviously can be
large when m and n are large.
We will assume that the relation R is the outer relation, that is, R is the
relation whose tuples are retrieved first. The relation S is then the inner
relation since in the nested iteration loop, tuples of S will only be
retrieved when a tuple of R has been read. A predicate which related
the join attributes is called the join predicate. The algorithm may be
written as:
for i = 1 to m
do access ith tuple of R;
for j = 1 to n do
access jth tuple of S;
compare ith tuple of R and the jth tuple of S;
if equi-join condition is satisfied then concatenate and save;
end
end.
This method basically scans the outer relation (R) first and retrieves
the first tuple. The entire inner relation S is then scanned and all the
tuples of S that satisfy the join predicate with the first tuple of R are
combined with that tuple of R and output as result. The process then
continues with the next tuple of R until R is exhausted.
This has cost (m + mn) which is order(mn). If the memory buffers can
store two blocks, one from R and one from S, the cost will go down by
a factor rs where r and s are the number of tuples per block in R and S
respectively. The technique is sometimes called the nested block
method. Some cost saving is achieved by reading the smaller relation in
the outer block since this reduces (m + mn). The cost of the method
would of course be much higher if the relations are not stored in a
packed form since then we might need to retrieve many more tuples.
Efficiency of the nested iteration (or nested block iteration) would
improve significantly if an index was available on one of the join
attributes. If the average number of blocks of relation S accessed for
each tuple of R was c then the cost of the join would be (m + mc)
where c< n.
 Using Indexes
The nested iteration method can be made more efficient if indexes are
available on both join columns in the relations R and S.

Assume that we have available indexes on both join columns a and b in
the relations R and S respectively. We may now scan both the indexes

101

Query Processing
Notes

to determine whether a pair of tuples has the same value of the join
attribute. If the value is the same, the tuple from R is selected and then
all the tuples from S are selected that have the same join attribute value.
This is done by scanning the index on the join attribute in S. The index
on the join attribute in R is now scanned to check if there are more than
the one tuple with the same value of the attribute. All the tuples of R
that have the same join attribute value are then selected and combined
with the tuples of S that have already been selected. The process then
continues with the next value for which tuples are available in R and S.
Clearly this method requires substantial storage so that we may store all
the attributes from R and S that have the same join attribute value. The
cost of the join when the indexes are used may be estimated as follows.
Let the cost of reading the indexes be aN1 and BN2 , then the total cost
is
. aN1 + BN2 +N1 + N2
Cost savings by using indexes can be large enough to justify building
an index when a join needs to be computed.
The Sort Merge Method
The nested scan technique is simple but involves matching each block
of R with every block of S. This can be avoided if both relations were
ordered on the join attribute. The sort-merge algorithm was introduced
by Blasgen and Eswaran in 1977. It is a classical technique that has
been the choice for joining relations that have no index on either of the
two attributes.
This method involves sorting the relations R and S on the join attributes
(if not already sorted), storing them as temporary lists and then
scanning them block by block and merging those tuples that satisfy the
join condition. The advantage of this scheme is that all of the inner
relation (in the nested iteration) does not need to be read in for each
tuple of the outer relation. This saving can be substantial if the outer
relation is large.
Let the cost of sorting R and S be Cr and Cs and let the cost of reading
the two relations in main memory be Nr and Ns respectively. The total
cost of the join is then
Cr + Cs + Nr + Ns
If one or both the relations are already sorted on the join attribute then
the cost of the join reduces.
The algorithm can be improved if we use Multiway Merge-Sort
The cost of sorting is n log n .
Simple Hash Join Method
This method involves building a hash table of the smaller relation R by
hashing each tuple on its hash attribute. Since we have assumed that the
relation R is too large to fit in the main memory, the hash table would
in general not fit into the main memory. The hash table therefore must
be built in stages. A number of addresses of the hash table are first

102

DATABASE MANAGEMENT
SYSTEM

selected such that the tuples hashed to those addresses can be stored in
the main memory.
The tuples of R that do not hash to these addresses are written back to
the disk. Let these tuples be relation R’. Now the algorithm works as
follows:
(a) Scan relation R and hash each tuple on its join attribute. If the
hashed value is equal to one of the addresses that are in the main
memory, store the tuple in the hash table.
Otherwise write the tuple back to disk in a new relation R’.
(b) Scan the relation S and hash each tuple of S on its join attribute.
One of the following three conditions must hold:
1. The hashed value is equal to one of the selected values, and one or
more tuple of R with same attribute value exists. We combine the tuples
of R that match with the tuple of S and output as the next tuples in the
join.
2. The hashed value is equal to one of the selected values, but there is
no tuple in R with same join attribute value. These tuple of S are
rejected.
3. The hashed value is not equal to one of the selected values. These
tuples are written back to disk as a new relation S’.
The above step continues till S is finished.
(c) Repeat steps (a) and (b) until either relation R’ or S’ or both are
exhausted.
Grace Hash-Join Method
This method is a modification of the Simple Hash Join method in that
the partitioning of R is completed before S is scanned and partitioning
of S is completed before the joining phase. The method consists of the
following three phases:
1. Partition R - Since R is assumed to be too large to fit in the main
memory, a hash table for it cannot be built in the main memory. The
first phase of the algorithm involves partitioning the relation into n
buckets, each bucket corresponding to a hash table entry. The number
of buckets n is chosen to be large enough so that each bucket will
comfortably fit in the main memory.
2. Partition S - The second phase of the algorithm involves partitioning
the relation S into the same number (n) of buckets, each bucket
corresponding to a hash table entry. The same hashing function as for R
is used.
3. Compute the Join - A bucket of R is read in and the corresponding
bucket of S is read in. Matching tuples from the two buckets are
combined and output as part of the join.
Hybrid Hash Join Method
The hybrid hash join algorithm is a modification of the Grace hash join
method.

103

Query Processing
Notes

Aggregation
Aggregation is often found in queries given the frequency of
requirements of finding an average, the maximum or how many times
something happens. The functions supported in SQL are average,
minimum, maximum, count, and sum. Aggregation can itself be of
different types including aggregation that only requires one relation, for
example finding the maximum mark in a subject, or it may involve a
relation but require something like finding the number of students in
each class. The latter aggregation would obviously require some
grouping of the tuples in the relation before aggregation can be applied.
Review & Self Assessment Question

1. Discuss the following rules governing the manipulation of relational

algebraic expressions?

2. Explain the algorithms used for the processing of join operation?

 3. Explain how you could estimate costs while performing query

processing?

Further Readings
Database Management system by Korth .

Database Management system by Navathe .

Database Management system by P G Gill .

Database Management system by A Leon .

104

DATABASE MANAGEMENT
SYSTEM

UNIT-7 CONCURRENCY
CONTROL TECHNIQUES

Contents
 Introduction

 Define Transaction

 ACID Properties of Transaction

 Transaction Properties

 Transaction States

 Concurrency Control

 Serializability

 Locking

 Deadlock

 Review & Self Assessment Question

 Further Readings

Introduction
Concurrency in terms of databases means allowing multiple users to
access the data contained within a database at the same time. If
concurrent access is not managed by the Database Management System
(DBMS) so that simultaneous operations don't interfere with one
another problems can occur when various transactions interleave,
resulting in an inconsistent database.
Concurrency is achieved by the DBMS, which interleaves actions
(reads/writes of DB objects) of various transactions. Each transaction
must leave the database in a consistent state if the DB is consistent
when the transaction begins.
Concurrent execution of user programs is essential for good DBMS
performance. Because disk accesses are frequent, and relatively slow, it
is important to keep the CPU humming by working on several user
programs concurrently. Interleaving actions of different user programs
can lead to inconsistency: e.g., check is cleared while account balance
is being computed. DBMS ensures such problems don’t arise: users can
pretend they are using a single-user system.
Define Transaction
A transaction is a sequence of read and write operations on data items
that logically functions as one unit of work

105

Concurrency Control
Techniques

Notes

• It should either be done entirely or not at all
• If it succeeds, the effects of write operations persist (commit); if it
fails, no effects of write operations persist (abort)
• These guarantees are made despite concurrent activity in the system,
and despite failures that may occur

Figure 7.1

ACID Properties of Transaction
• Atomic
Process all of a transaction or none of it; transaction cannot be further
subdivided (like an atom)
• Consistent
Data on all systems reflects the same state
• Isolated
Transactions do not interact/interfere with one another; transactions act
as if they are independent
• Durable
Effects of a completed transaction are persistent
Concurrent Execution
You know there are good reasons for allowing concurrency:-
1. Improved throughput and resource utilization.
(THROUGHPUT = Number of Transactions executed per unit of time.)
The CPU and the Disk can operate in parallel.When a Transaction
Read/Write the Disk another Transaction can be running in the CPU.
The CPU and Disk utilization also increases.
2. Reduced waiting time.
In a serial processing a short Transaction may have to wait for a long
transaction to complete. Concurrent execution reduces the average
response time; the average time for a Transaction to be completed.
Concurrency control
Concurrency control is needed to handle problems that can occur when
transactions execute concurrently. The following are the concurrency
issues:-
Lost Update: an update to an object by some transaction is overwritten
by another interleaved transaction without knowledge of the initial
update.

106

DATABASE MANAGEMENT
SYSTEM

Lost Update Example:-

Figure 7.2

Transaction A’s update is lost
Uncommitted Dependency: a transaction reads an object updated by
another transaction that later falls.
Uncommitted Dependency Example:-

Figure 7.3

Transaction B reads an uncommitted value for R
Inconsistent Analysis: a transaction calculating an aggregate function
uses some but not all updated objects of another transaction.
Inconsistent Analysis Example:-

Figure 7.4

107

Concurrency Control
Techniques

Notes

The value in SUM will be inconsistent
Main goals of Database Concurrency Control
• To point out problem areas in earlier performance analyses
• To introduce queuing network models to evaluate the baseline
performance of transaction processing systems
• To provide insights into the relative performance of transaction
processing systems
• To illustrate the application of basic analytic methods to the
performance analysis of various concurrency control methods
• To review transaction models which are intended to relieve the effect
of lock contention
• To provide guidelines for improving the performance of transaction
processing systems due to concurrency control; and to point out areas
for further investigation.
Transaction properties
To ensure data integrity the DBMS, should maintain the following
transaction properties- atomicity, consistency, isolation and durability.
These properties often referred to as acid properties an acronym derived
from the first letter of the properties. In the last lecture we have
introduced the above terms, now we will see their implementations.
We will consider the banking example to gain a better understanding of
the acid properties and why are they important. We will consider a
banking system that contains several accounts and a set of transactions
that accesses and updates accounts. Access to a database is
accomplished by two operations given below:-
1. Read(x)-This operation transfers the data item x from the database to
a local buffer belonging to the transaction that executed the read
operation
2. Write(x)-the write operation transfers the data item x from the local
buffer of the transaction that executed the write operation to the
database.
Now suppose that Ti is a transaction that transfers RS. 2000/- from
account CA2090 to SB2359. This transaction is defined as follows:-
Ti:

Read(CA2090);
CA2090:=CA2090-2000;
Write (CA2090);
Read (SB2359);
SB2359:=SB2359+2000;
Write (SB2359);

We will now consider the acid properties...

108

DATABASE MANAGEMENT
SYSTEM

Implementing Atomicity
Let’s assume that before the transaction take place the balances in the
account is Rs. 50000/- and that in the account SB2359 is Rs. 35000/-.
Now suppose that during the execution of the transaction a failure(for
example, a power failure) occurred that prevented the successful
completion of the transaction. The failure occurred after the
Write(CA2090); operation was executed, but before the execution of
Write(SB2359); in this case the value of the accounts CA2090 and
SB2359 are reflected in the database are Rs. 48,000/- and Rs. 35000/-
respectively. The Rs. 200/- that we have taken from the account is lost.
Thus the failure has created a problem. The state of the database no
longer reflects a real state of the world that the database is supposed to
capture. Such a state is called an inconsistent state. The database system
should ensure that such inconsistencies are not visible in a database
system. It should be noted that even during the successful execution of
a transaction there exists points at which the system is in an
inconsistent state. But the difference in the case of a successful
transaction is that the period for which the database is in an inconsistent
state is very short and once the transaction is over the system will be
brought back to a consistent state. So if a transaction never started or is
completed successfully, the inconsistent states would not be visible
except during the execution of the transaction. This is the reason for the
atomicity requirement. If the atomicity property provided all actions of
the transaction are reflected in the database of none are. The mechanism
of maintaining atomicity is as follows The DBMS keeps tracks of the
old values of any data on which a transaction performs a Write and if
the transaction does not complete its execution, old values are restored
o make it appear as though the transaction never took place. The
transaction management component of the DBMS ensures the atomicity
of each transaction.
Implementing Consistencies
The consistency requirement in the above eg. is that the sum of
CA2090 and SB2359 be unchanged by the execution of the transaction.
Before the execution of the transaction the amounts in the accounts in
CA2090 and SB2359 are 50,000 and 35,000 respectively.
After the execution the amounts become 48,000 and 37,000. In both
cases the sum of the amounts is 85,000 thus maintaining consistency.
Ensuring the consistency for an individual transaction is the
responsibility of the application programmer who codes the transaction.
Implementing the Isolation
Even if the atomicity and consistency properties are ensured for each
transaction there can be problems if several transactions are executed
concurrently. The different transactions interfere with one another and
cause undesirable results. Suppose we are executing the above
transaction Ti. We saw that the database is temporarily inconsistent

109

Concurrency Control
Techniques

Notes

while the transaction is being executed. Suppose that the transaction has
performed the Write (CA2090) operation, during this time another
transaction is reading the balances of different accounts. It checks the
account CA2090 and finds the account balance at 48,000.
Suppose that it reads the account balance of the other account (account
SB2359, before the first transaction has got a chance to update the
account.
So the account balance in the account Sb2359 is 35000. After the
second transaction has read the account balances, the first transaction
reads the account balance of the account SB2359 and updates it to
37000.But here we are left with a problem. The first transaction has
executed successfully and the database is back to a consistent state. But
while it was in an inconsistent state, another transaction performed
some operations (May be updated the total account balances). This has
left the database in an inconsistent state even after both the transactions
have been executed successfully. On solution to the situation
(concurrent execution of transactions) is to execute the transactions
serially- one after the other. This can create many problems. Suppose
long transactions are being executed first.
Then all other transactions will have to wait in the queue. There might
be many transactions that are independent (or that do not interfere with
one another). There is no need for such transactions to wait in the
queue. Also concurrent executions of transactions have significant
performance advantages. So the DBMS have found solutions to allow
multiple transactions to execute concurrency without any problem.
The isolation property of a transaction ensures that the concurrent
execution of transactions result in a system state that is equivalent to a
state that could have been obtained if the transactions were executed
one after another. Ensuring isolation property is the responsibility of the
concurrency-control component of the DBMS.
Implementing durability
The durability property guarantees that, once a transaction completes
successfully, all updates that it carried out on the database persist, even
if there is a system failure after the transaction completes execution.
We can guarantee durability by ensuring that either the updates carried
out by the transaction have been written to the disk before the
transaction completes or information about the updates that are carried
out by the transaction and written to the disk are sufficient for the data
base to reconstruct the updates when the data base is restarted after the
failure. Ensuring durability is the responsibility of the recovery-
management component of the DBMS Picture.
Transaction management and concurrency control components of a
DBMS.

110

DATABASE MANAGEMENT
SYSTEM

Transaction States
Once a transaction is committed, we cannot undo the changes made by
the transactions by rolling back the transaction. Only way to undo the
effects of a committed transaction is to execute a compensating
transaction. The creating of a compensating transaction can be quite
complex and so the task is left to the user and it is not handled by the
DBMS.
The transaction must be in one of the following states:-
1. Active:- This is a initial state, the transaction stays in this state while
it is executing
2. Partially committed:- The transaction is in this state when it has
executed the final statement
3. Failed: - A transaction is in this state once the normal execution of
the transaction cannot proceed.
4. Aborted: - A transaction is said to be aborted when the transaction
has rolled back and the database is being restored to the consistent state
prior to the start of the transaction.
5. Committed: - a transaction is in this committed state once it has been
successfully executed and the database is transformed in to a new
consistent state.
Different transactions states ar the given in following figure.

Figure 7.5 State Transition Diagram for a Transaction
Concurrency Control
As we have discussed this earlier, now we will talk about the
concurrency control. Concurrency control in database management
systems permits many users (assumed to be interactive) to access a
database in a multi programmed environment while preserving the
illusion that each user has sole access to the system. Control is needed

111

Concurrency Control
Techniques

Notes

to coordinate concurrent accesses to a DBMS so that the overall
correctness of the database is maintained. For example, users A and B
both may wish to read and update the same record in the database at
about the same time. The relative timing of the two transactions may
have an impact on the state of the database at the end of the
transactions. The end result may be an inconsistent database.
Need of Concurrent Control
• Several problems can occur when concurrent transactions execute in
an uncontrolled manner.
– The lost update problem: This occurs when two transactions that
access the same database items have their operations interleaved in a
way that makes the value of same database item incorrect.
– The temporary update (or dirty read) problem: This occurs when one
transaction updates a database item and then the transaction fails for
some reason. The updated item is accessed by another transaction
before it is changed back to its original value.
– The incorrect summary problem: If one transaction is calculating an
aggregate function on a number of records while other transaction is
updating some of these records, the aggregate function may calculate
some values before they are updated and others after they are updated.
• Whenever a transaction is submitted to a DBMS for execution, the
system must make sure that:
– All the operations in the transaction are completed successfully and
their effect is recorded permanently in the database; or
– the transaction has no effect whatever on the database or on the other
transactions in the case of that a transaction fails after executing some
of operations but before executing all of them.
Following are the problems created due to the concurrent execution of
the transactions:-
Multiple update problems
In this problem, the data written by one transaction (an update
operation) is being overwritten by another update transaction. This can
be illustrated using our banking example. Consider our account
CA2090 that has Rs. 50000 balance in it. Suppose a transaction T1 is
withdrawing RS. 10000 from the account while another transaction T2
is depositing RS. 20000 to the account. If these transactions were
executed serially (one after another), the final balance would be Rs.
60000, irrespective of the order in which the transactions are
performed. In other words, if the transactions were performed serially,
then the result would be the same if T1 is performed first or T2 is
performed first- order is not important. But if the transactions are
performed concurrently, then depending on how the transactions are
executed the results will vary. Consider the execution of the
transactions given below

112

DATABASE MANAGEMENT
SYSTEM

Figure 7.6

Both transactions start nearly at the same time and both read the
account balance of 50000. Both transactions perform the operations that
they are supposed to perform-T1 will reduce the amount by 10000and
will write the result to the data base; T2 will increase the amount by
20000 and will write the amount to the database overwriting the
previous update. Thus the account balance will gain additional 10000
producing a wrong result. If T2 were to start execution first, the result
would have been 40000 and the result would have been wrong again.
This situation could be avoided by preventing T2 from reading the
value of the account balance until the update by T1 has been completed.
Incorrect Analysis Problem
Problems could arise even when a transaction is not updating the
database. Transactions that read the database can also produce wrong
result, if they are allowed to read the database when the database is in
an inconsistent state. This problem is often referred to as dirty read or
unrepeatable data. The problem of dirty read occurs when a transaction
reads several values from the data base while another transactions are
updating the values.
Consider the case of the transaction that reads the account balances
from all accounts to find the total amount in various accounts. Suppose
that there are other transactions, which are updating the account
balances-either reducing the amount (withdrawals) or increasing the
amount (deposits). So when the first transaction reads the account
balances and finds the totals, it will be wrong, as it might have read the
account balances before the update in the case of some accounts and
after the updates in other accounts. This problem is solved by
preventing the first transaction (the one that reads the balances) from
reading the account balances until all the transactions that update the
accounts are completed.
Inconsistent Retrievals
Consider two users A and B accessing a department database
simultaneously. The user A is updating the database to give all
employees a 5% salary raise while user B wants to know the total salary
bill of a department. The two transactions interfere since the total salary
bill would be changing as the first user updates the employee records.
The total salary retrieved by the second user may be a sum of some

113

Concurrency Control
Techniques

Notes

salaries before the raise and others after the raise. Such a sum could not
be considered an acceptable value of the total salary (the value before
the raise or after the raise would be).

Figure 7.7 An Example of Inconsistent Retrieval

The problem illustrated in the last example is called the inconsistent
retrieval anomaly. During the execution of a transaction therefore,
changes made by another transaction that has not yet committed should
not be visible since that data may not be consistent.
Uncommitted Dependency
Consider the following situation:

Figure 7.8 An Example of Uncommitted Dependency

Transaction A reads the value of Q that was updated by transaction B
but was never committed. The result of Transaction A writing Q
therefore will lead to an inconsistent state of the database. Also if the
transaction A doesn't write Q but only reads it, it would be using a
value of Q which never really existed! Yet another situation would
occur if the roll back happens after Q is written by transaction A. The
roll back would restore the old value of Q and therefore lead to the loss

114

DATABASE MANAGEMENT
SYSTEM

of updated Q by transaction A. This is called the uncommitted
dependency anomaly.
Serializability
Serializability is a given set of interleaved transactions is said to be
serial sable if and only if it produces the same results as the serial
execution of the same transactions Serializability is an important
concept associated with locking. It guarantees that the work of
concurrently executing transactions will leave the database state as it
would have been if these transactions had executed serially. This
requirement is the ultimate criterion for database consistency and is the
motivation for the two-phase locking protocol, which dictates that no
new locks can be acquired on behalf of a transaction after the DBMS
releases a lock held by that transaction. In practice, this protocol
generally means that locks are held until commit time.
Serializability is the classical concurrency scheme. It ensures that a
schedule for executing concurrent transactions is equivalent to one that
executes the transactions serially in some order. It assumes that all
accesses to the database are done using read and write operations. A
schedule is called ``correct'' if we can find a serial schedule that is
``equivalent'' to it. Given a set of transactions T1...Tn, two schedules S1
and S2 of these transactions are equivalent if the following conditions
are satisfied:
Read-Write Synchronization: If a transaction reads a value written by
another transaction in one schedule, then it also does so in the other
schedule.
Write-Write Synchronization: If a transaction overwrites the value of
another transaction in one schedule, it also does so in the other
schedule.
These two properties ensure that there can be no difference in the
effects of the two schedules
Serializable schedule
A schedule is serial if, for every transaction T participating the
schedule, all the operations of T are executed consecutively in the
schedule. Otherwise it is called nonserial schedule.
• Every serial schedule is considered correct; some non-serial schedules
give erroneous results.
• A schedule S of n transactions is serializable if it is equivalent to some
serial schedule of the same n transactions; a nonserial schedule which is
not equivalent to any serial schedule is not serializable.
• The definition of two schedules considered “equivalent”:

– result equivalent: producing same final state of the database
(is not used)
– conflict equivalent: If the order of any two conflicting
operations is the same in both schedules.

115

Concurrency Control
Techniques

Notes

– view equivalent: If each read operation of a transaction reads
the result of the same write operation in both schedules and the
write operations of each transaction must produce the same
results.

• Conflict serializable: if a schedule S is conflict equivalent to some
serial schedule. we can reorder the non-conflicting operations S until
we form the equivalent serial schedule, and S is a serializable schedule.
• View Serializability: Two schedules are said to be view equivalent if
the following three conditions hold. The same set of transactions
participate in S and S'; and S and S' include the same operations of
those transactions. A schedule S is said to be view serializable if it is
view equivalent to a serial schedule.
Locking
In order to execute transactions in an interleaved manner it is necessary
to have some form of concurrency control.
• This enables a more efficient use of computer resources.
• One method of avoiding problems is with the use of locks.
• When a transaction requires a database object it must obtain a lock.
Locking is necessary in a concurrent environment to assure that one
process does not retrieve or update a record that is being updated by
another process. Failure to use some controls (locking), would result in
inconsistent and corrupt data.
Locks enable a multi-user DBMS to maintain the integrity of
transactions by isolating a transaction from others executing
concurrently. Locks are particularly critical in write-intensive and
mixed workload (read/write) environments, because they can prevent
the inadvertent loss of data or Consistency problems with reads.
In addition to record locking, DBMS implements several other locking
mechanisms to ensure the integrity of other data structures that provide
shared I/O, communication among different processes in a cluster and
automatic recovery in the event of a process or cluster failure.
Aside from their integrity implications, locks can have a significant
impact on performance. While it may benefit a given application to
lock a large amount of data (perhaps one or more tables) and hold these
locks for a long period of time, doing so inhibits concurrency and
increases the likelihood that other applications will have to wait for
locked resources.
Locking Rules
You know there are various locking rules that are applicable when a
user reads or writes a data to a database. The various locking rules are -
• Any number of transactions can hold S-locks on an item
• If any transaction holds an X-lock on an item, no other transaction
may hold any lock on the item
• A transaction holding an X-lock may issue a write or a read request on
the data item

116

DATABASE MANAGEMENT
SYSTEM

• A transaction holding an S-lock may only issue a read request on the
data item
Deadlock
You know there lies a threat while writing or reading data onto a
database with the help of available resources, it is nothing but the
deadlock condition.
In operating systems or databases, a situation in which two or more
processes are prevented from continuing while each waits for resources
to be freed by the continuation of the other. Any of a number of
situations where two or more processes cannot proceed because they
are both waiting for the other to release some resource.
A situation in which processes of a concurrent processor are waiting on
an event which will never occur. A simple version of deadlock for a
loosely synchronous environment arises when blocking reads and
writes are not correctly matched. For example, if two nodes both
execute blocking writes to each other at the same time, deadlock will
occur since neither write can complete until a complementary read is
executed in the other node.
Locking Techniques for Concurrency Control Based On
Time Stamp Ordering
The timestamp method for concurrency control does not need any locks
and therefore there are no deadlocks. Locking methods generally
prevent conflicts by making transaction to walk. Timestamp methods
do not make the transactions wait.
Transactions
Involved in a conflict are simply rolled back and restarted. A timestamp
is a unique identifier created by the DBMS that indicates the relative
starting time of a transaction. Timestamps are generated either using the
system clock (generating a timestamp when the transaction starts to
execute) or by incrementing a logical counter every time a new
transaction starts.
Time stamping is the concurrency control protocol in which the
fundamentals goal is to order transactions globally in such away that
older transactions get priority in the event of a conflict. In the Times
tamping method, if a transaction attempts to read or write a data item,
then a read or write operation is allowed only if the last update on that
data item was carried out by an older transaction. Otherwise the
transaction requesting the read or write is restarted and given a new
timestamp to prevent it from continually aborting and restarting. If the
restarted transaction is not allowed a new timestamp and is allowed a
new timestamp and is allowed to retain the old timestamp, it will never
be allowed to perform the read or write, because by that some other
transaction which has a newer timestamp than the restarted transaction
might not be to commit due to younger transactions having already
committed.

117

Concurrency Control
Techniques

Notes

In addition to the timestamp for the transactions, data items are also
assigned timestamps. Each data item contains a read-timestamp and
write-timestamp. The read-timestamp contains the timestamp of the last
transaction that read the item and the write-timestamp contains the
timestamp of the last transaction that updated the item. For a
transaction T the timestamp ordering protocol works as follows:
• Transactions T requests to read the data item ‘X’ that has already been
updated by a younger (later or one with a greater timestamp)
transaction. This means that an earlier transaction is trying to read a
data item that has been updated by a later transaction T is too late to
read the previous outdated value and any other values it has acquired
are likely to be inconsistent with the updated value of the data item. In
this situation, the transaction T is aborted and restarted with a new
timestamp.
• In all other cases, the transaction is allowed to proceed with the read
operation. The read-timestamp of the data item is updated with the
timestamp of transaction T.
• Transaction t requests to write (update) the data item ‘X’ that has
already been read by a younger (later or one with the greater
timestamp) transaction. This means that the younger transaction is
already using the current value of the data item and it would be an error
to update it now. This situation occurs when a transaction is late in
performing the write and a younger transaction has already read the old
value or written a new one. In this case the transaction T is aborted and
is restarted with a new timestamp.
• Transaction T asks to write the data item ‘X’ that has already been
written by a younger transaction. This means that the transaction T is
attempting to write an old or obsolete value of the data item. In this
case also the transaction T is aborted and is restarted with a new
timestamp.
• In all other cases the transaction T is allowed to proceed and the
write-timestamp of the data item is updated with the timestamp of
transaction T.
The above scheme is called basic timestamp ordering. This scheme
guarantees that the transactions are conflict serializable and the results
are equivalent to a serial schedule in which the transactions are
executed in chronological order by the timestamps. In other words, the
results of a basic timestamps ordering scheme will be as same as when
all the transactions were executed one after another without any
interleaving.
One of the problems with basic timestamp ordering is that it does not
guarantee recoverable schedules. A modification to the basic timestamp
ordering protocol that relaxes the conflict Serializability can be used to
provide greater concurrency by rejecting obsolete write operations. This
extension is known as Thomas’s write rule. Thomas’s write rule
modifies the checks for a write operation by transaction T as follows.

118

DATABASE MANAGEMENT
SYSTEM

• When the transaction T requests to write the data item ‘X’ whose
values has already been read by a younger transaction. This means that
the order transaction (transaction T) is writing an obsolete value to the
data item. In this case the write operation is ignored and the transaction
(transaction T) is allowed to continue as if the write were performed.
This principle is called the ‘ignore obsolete write rule’. This rule allows
for greater concurrency.
• In all other cases the transactions T is allowed to proceed and the
write-timestamp of transaction T.
Multi-version Concurrency Control Techniques (MVCC)
The aim of Multi-Version Concurrency is to avoid the problem of
Writers blocking Readers and vice-versa, by making use of multiple
versions of data. The problem of
Writers blocking Readers can be avoided if Readers can obtain access
to a previous version of the data that is locked by Writers for
modification.
The problem of Readers blocking Writers can be avoided by ensuring
that Readers do not obtain locks on data. Multi-Version Concurrency
allows Readers to operate without acquiring any locks, by taking
advantage of the fact that if a Writer has updated a particular record, its
prior version can be used by the Reader without waiting for the Writer
to Commit or Abort. In a Multi-version Concurrency solution, Readers
do not block Writers, and vice versa. While Multi-version concurrency
improves database concurrency, its impact on data consistency is more
complex.
 Requirements of Multi-Version Concurrency systems
As its name implies, multi-version concurrency relies upon multiple
versions of data to achieve higher levels of concurrency. Typically, a
DBMS offering multi-version concurrency (MVDB), needs to provide
the following features:
1. The DBMS must be able to retrieve older versions of a row.
2. The DBMS must have a mechanism to determine which version of a
row is valid in the context of a transaction.
Usually, the DBMS will only consider a version that was committed
prior to the start of the transaction that is running the query. In order to
determine this, the DBMS must know which transaction created a
particular version of a row, and whether this transaction committed
prior to the starting of the current transaction.
Approaches to Multi-Version Concurrency
There are essentially two approaches to multi-version concurrency. The
first approach is to store multiple versions of records in the database,
and garbage collect records when they are no longer required. This is
the approach adopted by PostgreSQL and Firebird/Interbase. The
second approach is to keep only the latest version of data in the
database, as in SVDB implementations, but reconstruct older versions

119

Concurrency Control
Techniques

Notes

of data dynamically as required by exploiting information within the
Write Ahead Log. This is the approach taken by Oracle and
MySQL/InnoDb.
Review & Self Assessment Question

1. What do you mean by concurrency?

2. What is concurrency control?

3. Explain Transaction with live examples?

4. What are the ACID Properties of Transaction?

5. Why concurrency is needed?

6. What do you mean by locking?

7. What do you mean by deadlocks?

8. Explain the timestamp ordering protocol?

9. Explain the Time stamping control?

Further Readings
Database Management system by Korth

Database Management system by Navathe

Database Management system by P G Gill

Database Management system by A Leon

120

DATABASE MANAGEMENT
SYSTEM

UNIT-8 DATABASE
RECOVERY TECHNIQUES

Contents
 Recovery Techniques

 Caching of Disk Block

 Transaction Rollback

 Recovery Technique Based on Deferred Update

 Shadow Paging

 Review & Self Assessment Question

 Further Readings

Introduction
In this chapter we discuss some of the techniques that can be used for
database recovery from failures. We have already discussed the
different causes of failure, such as system crashes and transaction
errors. We start Section 8.2 with an outline of a typical recovery
procedures and a categorization of recovery algorithms, and then
discuss several recovery concepts, including write ahead logging, in-
place versus shadow updates, and the process of rolling back (undoing)
the effect of an incomplete or failed transaction.
Recovery Concepts
Recovery Outline and Categorization of Recovery
Algorithms
Recovery from transaction failures usually means that the database is
restored to the most recent consistent state just before the time of
failure. To do this, the system must keep information about the changes
that were applied to data items by the various transactions.
This information is typically kept in the system log. A typical strategy
for recovery may be summarized informally as follows:
1. If there is extensive damage to a wide portion of the database due to
catastrophic failure, such as a disk crash, the recovery method restores a
past copy of the database that was backed up to archival storage
(typically tape) and reconstructs a more current state by reapplying or
redoing the operations of committed transactions from the backed up
log, up to the time of failure.

2. When the database is not physically damaged but has become
inconsistent due to non catastrophic failures of types as we discussed in

121

Database Recovery
Technique

NOTES

the previous chapter, the strategy is to reverse any changes that caused
the inconsistency by undoing some operations. It may also be necessary
to redo some operations in order to restore a consistent state of the
database, as we shall see. In this case we do not need a complete
archival copy of the database. Rather, the entries kept in the online
system log are consulted during recovery.
Conceptually, we can distinguish two main techniques for recovery
from non catastrophic transaction failures: (l) deferred update and (2)
immediate update. The deferred update techniques do not physically
update the database on disk until after a transaction reaches its commit
point; then the updates are recorded in the database. Before reaching
commit, all transaction updates are recorded in the local transaction
workspace (or buffers).
During commit, the updates are first recorded persistently in the log and
then written to the database. If a transaction fails before reaching its
commit point, it will not have changed the database in any way, so
UNDO is not needed. It may be necessary to REDO the effect of the
operations of a committed transaction from the log, because their effect
may not yet have been recorded in the database. Hence, deferred update
is also known as the NO-UNDO/ REDO algorithm.
In the immediate update techniques, the database may be updated by
some operations of a transaction before the transaction reaches its
commit point. However, these operations are typically recorded in the
log on disk by force writing before they are applied to the database
making recovery still possible. If a transaction fails after recording
some changes in the database but before reaching its commit point, the
effect of its operations on the database must be undone; that is, the
transaction must be rolled back. In the general case of immediate
update, both undo and redo may be required during recovery.
This technique, known as the UNDO/REDO algorithm, requires both
operations, and is used most often in practice. A variation of the
algorithm where all updates are recorded in the database before a
transaction commits requires undo only, so it is known as the
UNDO/NO-REDO algorithm.
Caching (Buffering) of Disk Blocks
The recovery process is often closely intertwined with operating system
functions-in particular, the buffering and caching of disk pages in main
memory. Typically, one or more disk pages that include the data items
to be updated are cached into main memory buffers and then updated in
memory before being written back to disk. The caching of disk pages is
traditionally an operating system function, but because of its
importance to the efficiency of recovery procedures, it is handled by the
DBMS by calling low-level operating systems routines. In general, it is
convenient to consider recovery in terms of the database disk pages
(blocks). Typically a collection of in-memory buffers, called the DBMS
cache, is kept under the control of the DBMS for the purpose of holding

122

DATABASE MANAGEMENT
SYSTEM

these buffers. A directory for the cache is used to keep track of which
database items are in the buffers.' This can be a table of <disk page
address, buffer location> entries. When the DBMS requests action on
some item, it first checks the cache directory to determine whether the
disk page containing the item is in the cache. If it is not, then the item
must be located on disk, and the appropriate disk pages are copied into
the cache. It may be necessary to replace (or flush) some of the cache
buffers to make space available for the new item. Some page-
replacement strategy from operating systems, such as least recently
used (LRU) or first-in-first-out (FIFO), can be used to select the buffers
for replacement.
Associated with each buffer in the cache is a dirty bit, which can be
included in the directory entry, to indicate whether or not the buffer has
been modified? When a page is first read from the database disk into a
cache buffer, the cache directory is updated with the new disk page
address, and the dirty bit is set to a (zero). As soon as the buffer is
modified, the dirty bit for the corresponding directory entry is set to 1
(one). When the buffer contents are replaced (flushed) from the cache,
the contents must first be written back to the corresponding disk page
only if it’s dirty bit is 1. Another bit, called the pin unpin bit, is also
needed-a page in the cache is pinned (bit value 1 (one» if it cannot be
written back to disk as yet.
Two main strategies can be employed when flushing a modified buffer
back to disk. The first strategy, known as in-place updating, writes the
buffer back to the same original disk location, thus overwriting the old
value of any changed data items on disk, Hence, a single copy of each
database disk block is maintained. The second strategy, known as
shadowing, writes an updated buffer at a different disk location, so
multiple versions of data items can be maintained. In general, the old
value of the data item before updating is called the before image
(BFIM), and the new value after updating is called the after image
(AFIM). In shadowing, both the BFIM and the AFIM can be kept on
disk; hence, it is not strictly necessary to maintain a log for recovering.
Write-Ahead Logging, Steal/No-Steal, and Force/No-
Force
When in-place updating is used, it is necessary to use a log for
recovery. In this case, the recovery mechanism must ensure that the
BFIM of the data item is recorded in the appropriate log entry and that
the log entry is flushed to disk before the BFIM is overwritten with the
AFIM in the database on disk. This process is generally known as
write-ahead logging. Before we can describe a protocol for write-ahead
logging, we need to distinguish between two types of log entry
information included for a write command:
(1) The information needed for UNDO and (2) that needed for REDO.
A REDO type log entry includes the new value (AFIM) of the item

123

Database Recovery
Technique

NOTES

written by the operation since this is needed to redo the effect of the
operation from the log (by setting the item value in the database to its
AFIM). The UNDO-type log entries include the old value (BFIM) of
the item since this is needed to undo the effect of the operation from the
log (by setting the item value in the database back to its BFIM). In an
UNDO/REDO algorithm, both types of log entries are combined. In
addition, when cascading rollback is possible, read_item entries in the
log are considered to be UNDO-type entries.
As mentioned, the DBMS cache holds the cached database disk blocks,
which include not only data blocks but also index blocks and log blocks
from the disk. When a log record is written, it is stored in the current
log block in the DBMS cache. The log is simply a sequential (append-
only) disk file and the DBMS cache may contain several log blocks (for
example, the last n log blocks) that will be written to disk. When an
update to a data block-stored in the DBMS cache-is made, an
associated log record is written to the last log block in the DBMS
cache. With the write-ahead logging approach, the log blocks that
contain the associated log records for a particular data block update
must first be written to disk before the data block itself can be written
back to disk. Standard DBMS recovery terminology includes the terms
steal/no-steal and force/no force, which specify when a page from the
database can be written to disk from the cache:
1. If a cache page updated by a transaction cannot be written to disk
before the transaction commits, this is called a no-steal approach. The
pin-unpin bit indicates if a page cannot be written back to disk.
Otherwise, if the protocol allows writing an updated buffer before the
transaction commits, it is called steal. Steal is used when the DBMS
cache (buffer) manager needs a buffer frame for another transaction and
the buffer manager replaces an existing page that had been updated but
whose transaction has not committed.
2. If all pages updated by a transaction are immediately written to disk
when the transaction commits, this is called a force approach.
Otherwise, it is called no-force. The deferred update recovery scheme
in Section 8.3 follows a no-steal approach.
However, typical database systems employ a steal/no-force strategy.
The advantage of steal is that it avoids the need for a very large buffer
space to store all updated pages in memory. The advantage of no-force
is that an updated page of a committed transaction may still be in the
buffer when another transaction needs to update it, thus eliminating the
I/O cost to read that page again from disk. This may provide a
substantial saving in the number of I/O operations when a specific page
is updated heavily by multiple transactions. To permit recovery when
in-place updating is used, the appropriate entries required for recovery
must be permanently recorded in the logon disk before changes are
applied to the database. For example, consider the following write-

124

DATABASE MANAGEMENT
SYSTEM

ahead logging (WAL) protocol for a recovery algorithm that requires
both UNDO and REDO:
1. The before image of an item cannot be overwritten by its after image
in the database on disk until all UNDO-type log records for the
updating transaction-up to this point in time have been force-written to
disk.
2. The commit operation of a transaction cannot be completed until all
the REDO-type and UNDO-type log records for that transaction have
been force-written to disk. To facilitate the recovery process, the
DBMS recovery subsystem may need to maintain a number of lists
related to the transactions being processed in the system. These include
a list for active transactions that have started but not committed as yet,
and it may also include lists of all committed and aborted transactions
since the last checkpoint. Maintaining these lists makes the recovery
process more efficient.
Checkpoints in the System log and Fuzzy Check
pointing
Another type of entry in the log is called a checkpoint. A [checkpoint]
record is written into the log periodically at that point when the system
writes out to the database on disk all DBMS buffers that have been
modified. As a consequence of this, all transactions that have their
[commit, T] entries in the log before a [checkpoint] entry do not need to
have their WRITE operations redone in case of a system crash, since all
their updates will be recorded in the database on disk during check
pointing.
The recovery manager of a DBMS must decide at what intervals to take
a checkpoint.
The interval may be measured in time-say, every m minutes-or in the
number t of committed transactions since the last checkpoint, where the
values of m or t are system parameters. Taking a checkpoint consists of
the following actions:
1. Suspend execution of transactions temporarily.
2. Force-write all main memory buffers that have been modified to
disk.
3. Write a [checkpoint] record to the log, and force-write the log to
disk.
4. Resume executing transactions.
As a consequence of step 2, a checkpoint record in the log may also
include additional information, such as a list of active transaction ids,
and the locations (addresses) of the first and most recent (last) records
in the log for each active transaction. This can facilitate undoing
transaction operations in the event that a transaction must be rolled
back.
The time needed to force-write all modified memory buffers may delay
transaction processing because of step 1. To reduce this delay, it is

125

Database Recovery
Technique

NOTES

common to use a technique called fuzzy check pointing in practice. In
this technique, the system can resume transaction processing after the
[checkpoint] record is written to the log without having to wait for step
2 to finish. However, until step 2 is completed, the previous
[checkpoint] record should remain valid. To accomplish this, the
system maintains a pointer to the valid checkpoint, which continues to
point to the previous [checkpoint] record in the log. Once step 2 is
concluded, that pointer is changed to point to the new checkpoint in the
log.
Transaction Rollback
If a transaction fails for whatever reason after updating the database, it
may be necessary to roll back the transaction. If any data item values
have been changed by the transaction and written to the database, they
must be restored to their previous values (BFIMs). The undo type log
entries are used to restore the old values of data items that must be
rolled back. If a transaction T is rolled back, any transaction S that has,
in the interim, read the value of some data item X written by T must
also be rolled back. Similarly, once S is rolled back, any transaction R
that has read the value of some data item Y written by S must also be
rolled back; and so on. This phenomenon is called cascading rollback,
and can occur when the recovery protocol ensures recoverable
schedules but does not ensure strict or cascadeless schedules.
Cascading rollback, understandably, can be quite complex and time-
consuming. That is why almost all recovery mechanisms are designed
such that cascading rollback is never required.
Figure 8.1 shows an example where cascading rollback is required. The
read and write operations of three individual transactions are shown in
Figure 8.1a. Figure 8.1b shows the system log at the point of a system
crash for a particular execution schedule of these transactions. The
values of data items A, B, C, and 0, which are used by the transactions,
are shown to the right of the system log entries. We assume that the
original item values, shown in the first line, are A = 30, B = 15, C = 40,
and 0 = 20. At the point of system failure, transaction T3 has not
reached its conclusion and must be rolled back. The WRITE operations
of T3 , marked by a single * in Figure 8.1b, are the T3 operations that
are undone during transaction rollback. Figure 8.1c graphically shows
the operations of the different transactions along the time axis.
We must now check for cascading rollback. From Figure 8.1c we see
that transaction T2 reads the value of item B that was written by
transaction T3; this can also be determined by examining the log.
Because T3 is rolled back, T2 must now be rolled back, too. The
WRITE operations of T2, marked by ** in the log, are the ones that are
undone. Note that only write_item operations need to be undone during
transaction rollback; read_item operations are recorded in the log only
to determine whether cascading rollback of additional transactions is
necessary.

126

DATABASE MANAGEMENT
SYSTEM

Figure 8.1 Illustrating cascading rollback (a process that never occurs in
strict or cascade less schedules). (a) The read and write operations of
three transactions. (b) System log at point of crash. (c) Operations
before the crash.
In practice, cascading rollback of transactions is never required because
practical recovery methods guarantee cascadeless or strict schedules.
Hence, there is also no need to record any read_item operations in the
log, because these are needed only for determining cascading rollback.
Recovery Techniques Based On Deferred Update
The idea behind deferred update techniques is to defer or postpone any
actual updates to the database until the transaction completes its
execution successfully and reaches its commit point. During transaction
execution, the updates are recorded only in the log and in the cache
buffers. After the transaction reaches its commit point and the log is
force written to disk, the updates are recorded in the database. If a
transaction fails before reaching its commit point, there is no need to

127

Database Recovery
Technique

NOTES

undo any operations, because the transaction has not affected the
database on disk in any way. Although this may simplify recovery, it
cannot be used in practice unless transactions are short and each
transaction changes few items. For other types of transactions, there is
the potential for running out of buffer space because transaction
changes must be held in the cache buffers until the commit point.
We can state a typical deferred update protocol as follows:
1. A transaction cannot change the database on disk until it reaches its
commit point.
2. A transaction does not reach its commit point until all its update
operations are recorded in the log and the log is force-written to disk.
Notice that step of this protocol is a restatement of the write-ahead
logging (WAL) protocol. Because the database is never updated on disk
until after the transaction commits, there is never a need to UNDO any
operations. Hence, this is known as the NO UNDO/ REDO recovery
algorithm. REDO is needed in case the system fails after a transaction
commits but before all its changes are recorded in the database on disk.
In this case, the transaction operations are redone from the log entries.
Usually, the method of recovery from failure is closely related to the
concurrency control method in multi user systems. First we discuss
recovery in single-user systems, where no concurrency control is
needed, so that we can understand the recovery process independently
of any concurrency control method. We then discuss how concurrency
control may affect the recovery process.
Recovery Using Deferred Update in a Single-User
Environment
In such an environment, the recovery algorithm can be rather simple.
The algorithm RDU_S (Recovery using Deferred Update in a Single-
user environment) uses a REDO procedure, given subsequently, for
redoing certain write_item operations; it works as follows:
PROCEDURE RDU_S: Use two lists of transactions: the committed
transactions since the last checkpoint, and the active transactions (at
most one transaction will fall in this category, because the system is
single-user). Apply the REDO operation to all the WRITE_ITEM
operations of the committed transactions from the log in the order in
which they were written to the log. Restart the active transactions.
The REDO procedure is defined as follows:
REDO (WRITE_OP): Redoing a write_item operation WRITE_OP
consists of Examining its log entry [write_item, T, X, new_value] and
setting the value of item X in the database to new_val ue, which is the
after image (AFIM).
The REDO operation is required to be idempotent-that is, executing it
over and over is equivalent to executing it just once. In fact, the whole
recovery process should be idempotent. This is so because, if the
system were to fail during the recovery process, the next recovery

128

DATABASE MANAGEMENT
SYSTEM

attempt might REDO certain write_item operations that had already
been redone during the first recovery process. The result of recovery
from a system crash during recovery should be the same as the result of
recovering when there is no crash during recovery Notice that the only
transaction in the active list will have had no effect on the database
because of the deferred update protocol, and it is ignored completely by
the recovery process because none of its operations were reflected in
the database on disk. However, this transaction must now be restarted,
either automatically by the recovery process or manually by the user.
Figure 8.2 shows an example of recovery in a single-user environment,
where the first failure occurs during execution of transaction Tv as
shown in Figure 8.2b. The recovery process will redo the [write_item,
T1, D, 20] entry in the log by resetting the value of item D to 20 (its
new value). The [write, T2, ...] entries in the log are ignored by the
recovery process because T2 is not committed. If a second failure
occurs during recovery from the first failure, the same recovery process
is repeated from start to finish, with identical results.

Figure 8.2 An example of recovery using deferred update in a single-
user environment. (a) The READ and WRITE operations of two
transactions. (b) The system log at the point of crash.
Deferred Update with Concurrent Execution in a
Multi user Environment
For multi user systems with concurrency control, the recovery process
may be more complex, depending on the protocols used for
concurrency control. In many cases, the concurrency control and
recovery processes are interrelated. In general, the greater the degree of
concurrency we wish to achieve, the more time consuming the task of
recovery becomes.
Consider a system in which concurrency control uses strict two-phase
locking, so the locks on items remain in effect until the transaction
reaches its commit point. After that, the locks can be released. This
ensures strict and serializable schedules. Assuming that [checkpoint]
entries are included in the log, a possible recovery algorithm for this
case, which we call RDU_M (Recovery using Deferred Update in a

129

Database Recovery
Technique

NOTES

Multi user environment), is given next. This procedure uses the REDO
procedure defined earlier. PROCEDURE RDU_M (WITH
CHECKPOINTS): Use two lists of transactions maintained by the
system: the committed transactions T since the last checkpoint (commit
list), and the active transactions T' (active list). REDO all the WRITE
operations of the committed transactions from the log, in the order in
which they were written into the log. The transactions that are active
and did not commit are effectively canceled and must be resubmitted.
Figure 8.3 shows a possible schedule of executing transactions. When
the checkpoint was taken at time t), transaction T) had committed,
whereas transactions T3 and T4 had not. Before the system crash at
time t2, T3 and T2 were committed but not T4 and T5. According to
the RDU_M method, there is no need to redo the write_item operations
of transaction T1-or any transactions committed before the last
checkpoint time t). Write_item operations of T2 and T3 must be redone,
however, because both transactions reached

FIGURE 8.3 an example of recovery in a multiuser environment. Their
commit points after the last checkpoint.

Recall that the log is force-written before committing a transaction.
Transactions T4 and T5 are ignored: They are effectively canceled or
rolled back because none of their write_item operations were recorded
in the database under the deferred update protocol.We will refer to
Figure 8.3 later to illustrate other recovery protocols. We can make the
NO-UNDO/REDO recovery algorithm more efficient by noting that, if
a data item X has been updated-as indicated in the log entries-more
than once by committed transactions since the last checkpoint, it is only
necessary to REDO the last update of X from the log during recovery.
The other updates would be overwritten by this last REDO in any case.
In this case, we start from the end of the log; then, whenever an item is
redone, it is added to a list of redone items. Before REDO is applied to
an item, the list is checked; if the item appears on the list, it is not
redone again, since its last value has already been recovered. If a
transaction is aborted for any reason (say, by the deadlock detection
method), it is simply resubmitted, since it has not changed the database
on disk. A drawback of the method described here is that it limits the

130

DATABASE MANAGEMENT
SYSTEM

concurrent execution of transactions because all items remain locked
until the transaction reaches its commit point. In addition, it may
require excessive buffer space to hold all updated items until the
transactions commit.
The method's main benefit is that transaction operations never need to
be undone, for two reasons:
1. A transaction does not record any changes in the database on disk
until after it reaches its commit point-that is, until it completes its
execution successfully. Hence, a transaction is never rolled back
because of failure during transaction execution.
2. A transaction will never read the value of an item that is written by
an uncommitted transaction, because items remain locked until a
transaction reaches its commit point.
Hence, no cascading rollback will occur. Figure 8.4 shows an example
of recovery for a multi user system that utilizes the recovery and
concurrency control method just described.
Transaction Actions That Do Not Affect the Database
In general, a transaction will have actions that do not affect the
database, such as generating and printing messages or reports from
information retrieved from the database. If a transaction fails before
completion, we may not want the user to get these reports, since the
transaction has failed to complete. If such erroneous reports are
produced, part of the recovery process would have to inform the user
that these reports are wrong, since the user may take an action based on
these reports that affects the database. Hence, such reports should be
generated only after the transaction reaches its commit point. A
common method of dealing with such actions is to issue the commands
that generate the reports but keep them as batch jobs, which are
executed only after the transaction reaches its commit point. If the
transaction fails, the batch jobs are canceled.

131

Database Recovery
Technique

NOTES

Figure 8.4 an example of recovery using deferred update with
concurrent transactions. (a) The READ and WRITE operations of four
transactions. (b) System log at the point of crash.
Recovery Techniques Based On Immediate Update
In these techniques, when a transaction issues an update command, the
database can be updated "immediately," without any need to wait for
the transaction to reach its commit point. In these techniques, however,
an update operation must still be recorded in the log (on disk) before it
is applied to the database-using the write-ahead logging protocol-so that
we can recover in case of failure.
Provisions must be made for undoing the effect of update operations
that have been applied to the database by a failed transaction. This is
accomplished by rolling back the transaction and undoing the effect of
the transaction's write_item operations.
Theoretically, we can distinguish two main categories of immediate
update algorithms. If the recovery technique ensures that all updates of
a transaction are recorded in the database on disk before the transaction
commits, there is never a need to REDO any operations of committed
transactions.
This is called the UNDO/NO-REDO recovery algorithm. On the other
hand, if the transaction is allowed to commit before all its changes are
written to the database, we have the most general case, known as the
UNDO/REDO recovery algorithm. This is also the most complex
technique. Next, we discuss two examples of UNDO/REDO algorithms
and leave it as an exercise for the reader to develop the UNDO/NO-
REDO variation.
UNDO/REDO Recovery Based on Immediate Update in a Single-User
Environment
In a single-user system, if a failure occurs, the executing (active)
transaction at the time of failure may have recorded some changes in
the database. The effect of all such operations must be undone. The
recovery algorithm RIU_S (Recovery using Immediate Update in a
Single-user environment) uses the REDO procedure defined earlier, as
well as the UNDO procedure defined below.
PROCEDURE RIU_S
1. Use two lists of transactions maintained by the system: the
committed transactions since the last checkpoint and the active
transactions (at most one transaction will fall in this category, because
the system is single-user).
2. Undo all the write_item operations of the active transaction from the
log, using the UNDO procedure described below.
3. Redo the write_item operations of the committed transactions from
the log, in the order in which they were written in the log, using the
REDO procedure described earlier.
The UNDO procedure is defined as follows:

132

DATABASE MANAGEMENT
SYSTEM

UNDO(WRITE_OP): Undoing a write_item operation write_op
consists of examining its log entry [write_item, T, X, old_va1ue,
new_va1ue] and setting the value of item X in the database to
old_va1ue which is the before image (BFIM). Undoing a number of
write_item operations from one or more transactions from the log must
proceed in the reverse order from the order in which the operations
were written in the log.
UNDO/REDO Recovery Based on Immediate Update
with Concurrent Execution
When concurrent execution is permitted, the recovery process again
depends on the protocols used for concurrency control. The procedure
RIU_M (Recovery using Immediate Updates for a Multi user
environment) outlines a recovery algorithm for concurrent transactions
with immediate update. Assume that the log includes checkpoints and
that the concurrency control protocol produces strict schedules-as, for
example, the strict two phase locking protocol does. Recall that a strict
schedule does not allow a transaction to read or write an item unless the
transaction that last wrote the item has committed (or aborted and rolled
back). However, deadlocks can occur in strict two phase locking, thus
requiring abort and UNDO of transactions. For a strict schedule,
UNDO of an operation requires changing the item back to its old value
(BFIM).
PROCEDURE RIU_M
1. Use two lists of transactions maintained by the system: the
committed transactions since the last checkpoint and the active
transactions.
2. Undo all the wri te_item operations of the active (uncommitted)
transactions, using the UNDO procedure. The operations should be
undone in the reverse of the order in which they were written into the
log.
3. Redo all the wri te_item operations of the committed transactions
from the log, in the order in which they were written into the log.
As we discussed in Section 8.3.2, step 3 is more efficiently done by
starting from the end of the log and redoing only the last update of each
item X. Whenever an item is redone, it is added to a list of redone items
and is not redone again. A similar procedure can be devised to improve
the efficiency of step 2.
Shadow Paging
This recovery scheme does not require the use of a log in a single-user
environment. In a multiuser environment, a log may be needed for the
concurrency control method. Shadow paging considers the database to
be made up of a number of fixed-size disk pages (or disk blocks)-say,
n-for recovery purposes. A directory with n entries' is constructed,
where the ith entry points to the ith database page on disk. The

133

Database Recovery
Technique

NOTES

directory is kept in main memory if it is not too large, and all
references-reads or writes-to database pages on disk go through it.
When a transaction begins executing, the current directory-whose
entries point to the most recent or current database pages on disk-is
copied into a shadow directory. The shadow directory is then saved on
disk while the current directory is used by the transaction. During
transaction execution, the shadow directory is never modified. When a
write_ item operation is performed, a new copy of the modified
database page is created, but the old copy of that page is not
overwritten. Instead, the new page is written elsewhere-on some
previously unused disk block. The current directory entry is modified to
point to the new disk block, whereas the shadow directory is not
modified and continues to point to the old unmodified disk block.
Figure 8.5 illustrates the concepts of shadow and current directories.
For pages updated by the transaction, two versions are kept. The old
version is referenced by the shadow directory, and the new version by
the current directory. To recover from a failure during transaction
execution, it is sufficient to free the modified database pages and to
discard the current directory. The state of the database before
transaction execution is available through the shadow directory, and
that state is recovered by reinstating the shadow directory. The database
thus is returned to its State.

Figure 8.5 An example of shadow paging.

 prior to the transaction that was executing when the crash occurred,
and any modified pages are discarded. Committing a transaction
corresponds to discarding the previous shadow directory. Since

134

DATABASE MANAGEMENT
SYSTEM

recovery involves neither undoing nor redoing data items, this
technique can be categorized as a NO-UNDO/NO-REDO technique for
recovery. In a multiuser environment with concurrent transactions, logs
and checkpoints must be incorporated into the shadow paging
technique. One disadvantage of shadow paging is that the updated
database pages change location on disk. This makes it difficult to keep
related database pages close together on disk without complex storage
management strategies. Furthermore, if the directory is large, the
overhead of writing shadow directories to disk as transactions commit
is significant. A further complication is how to handle garbage
collection when a transaction commits. The old pages referenced by the
shadow directory that have been updated must be released and added to
a list of free pages for future use. These pages are no longer needed
after the transaction commits.
Another issue is that the operation to migrate between current and
shadow directories must be implemented as an atomic operation.
Database Backup and Recovery from Catastrophic
Failures
So far, all the techniques we have discussed apply to non catastrophic
failures. A key assumption has been that the system log is maintained
on the disk and is not lost as a result of the failure. Similarly, the
shadow directory must be stored on disk to allow recovery when
shadow paging is used. The recovery techniques we have discussed use
the entries in the system log or the shadow directory to recover from
failure by bringing the database back to a consistent state.
The recovery manager of a DBMS must also be equipped to handle
more catastrophic failures such as disk crashes. The main technique
used to handle such crashes is that of database backup. The whole
database and the log are periodically copied onto a cheap storage
medium such as magnetic tapes. In case of a catastrophic system
failure, the latest backup copy can be reloaded from the tape to the disk,
and the system can be restarted.
To avoid losing all the effects of transactions that have been executed
since the last backup, it is customary to back up the system log at more
frequent intervals than full database backup by periodically copying it
to magnetic tape. The system log is usually substantially smaller than
the database itself and hence can be backed up more frequently.
Thus users do not lose all transactions they have performed since the
last database backup. All committed transactions recorded in the
portion of the system log that has been backed up to tape can have their
effect on the database redone. A new log is started after each database
backup. Hence, to recover from disk failure, the database is first
recreated on disk from its latest backup copy on tape. Following that,
the effects of all the committed transactions whose operations have

135

Database Recovery
Technique

NOTES

been recorded in the backed-up copies of the system log are
reconstructed.
Review & Self Assessment Question

1. Discuss the different types of transaction failures. What is meant by

catastrophic failure?

2. Discuss the actions taken by the read_item and write_item operations

on a database.

3. What is the system log used for? What are the typical kinds of entries

in a system log? What are checkpoints, and why are they important?

4. What are transaction commit points, and why are they important?

5. How are buffering and caching techniques used by the recovery

subsystem?

Further Readings
Database Management system by Korth

Database Management system by Navathe

Database Management system by P G Gill

Database Management system by A Leon

136

DATABASE MANAGEMENT
SYSTEM

UNIT-9 DISTRIBUTED
DATABASES AND CLIENT-
SERVER ARCHITECTURES

STRUCTURE
Contents
 Distributed Database Concepts

 Database Design

 Data Fragmentation

 Data Replication and Allocation

 Types of Distributed Database Systems

 Query Processing in Distributed Database

 Client Server Architecture

 Review & Self Assessment Question

 Further Readings

Introduction
In this chapter we turn our attention to distributed databases (DDBs),
distributed database management systems (DDBMSs), and how the
client-server architecture is used as a platform for database application
development. The DDB technology emerged as a merger of two
technologies: (1) database technology, and (2) network and data
communication technology. The latter has made tremendous strides in
terms of wired and wireless technologies-from satellite and cellular
communications and Metropolitan Area Networks (MANs) to the
standardization of protocols like Ethernet, TCP/IP, and the
Asynchronous Transfer Mode (ATM) as well as the explosion of the
Internet. While early databases moved toward centralization and
resulted in monolithic gigantic databases in the seventies and early
eighties, the trend reversed toward more decentralization and autonomy
of processing in the late eighties. With advances in distributed
processing and distributed computing that occurred in the operating
systems arena, the database research community did considerable work
to address the issues of data distribution, distributed query and
transaction processing, distributed database metadata management, and
other topics, and developed many research prototypes. However, a full-
scale comprehensive DDBMS that implements the functionality and
techniques proposed in DDB research never emerged as a commercially

137

Distributed Database and
Client Server

Architecture Structures

NOTES

viable product. Most major vendors redirected their efforts from
developing a "pure" DDBMS product into developing systems based on
client-server, or toward developing technologies for accessing
distributed heterogeneous data sources.
Organizations, however, have been very interested in the
decentralization of processing (at the system level) while achieving an
integration of the information resources (at the logical level) within
their geographically distributed systems of databases, applications, and
users. Coupled with the advances in communications, there is now a
general endorsement of the client-server approach to application
development, which assumes many of the DDB issues.
Distributed Database Concepts
Distributed databases bring the advantages of distributed computing to
the database management domain. A distributed computing system
consists of a number of processing elements, not necessarily
homogeneous, that are interconnected by a computer network, and that
cooperate in performing certain assigned tasks. As a general goal,
distributed computing systems partition a big, unmanageable problem
into smaller pieces and solve it efficiently in a coordinated manner. The
economic viability of this approach stems from two reasons: (l) more
computer power is harnessed to solve a complex task, and (2) each
autonomous processing element can be managed independently and
develop its own applications.
We can define a distributed database (DDB) as a collection of multiple
logically interrelated databases distributed over a computer network,
and a distributed database management system (DDBMS) as a software
system that manages a distributed database while making the
distribution transparent to the user. A collection of files stored at
different nodes of a network and the maintaining of interrelationships
among them via hyperlinks has become a common organization on the
Internet, with files of Web pages.
The common functions of database management, including uniform
query processing and transaction processing, do not apply to this
scenario yet. The technology is, however, moving in a direction such
that distributed World Wide Web (WWW) databases will become a
reality in the near future.
Parallel Versus Distributed Technology
Turning our attention to parallel system architectures, there are two
main types of multiprocessor system architectures that are
commonplace:
• Shared memory (tightly coupled) architecture: Multiple processors
share secondary (disk) storage and also share primary memory.
• Shared disk (loosely coupled) architecture: Multiple processors share
secondary (disk) storage but each has their own primary memory.

138

DATABASE MANAGEMENT
SYSTEM

These architectures enable processors to communicate without the
overhead of exchanging messages over a network: Database
management systems developed using the above types of architectures
are termed parallel database management systems rather than DDBMS,
since they utilize parallel processor technology. Another type of
multiprocessor architecture is called shared nothing architecture. In this
architecture, every processor has its own primary and secondary (disk)
memory, no common memory exists, and the processors communicate
over a high-speed interconnection network (bus or switch). Although
the shared nothing architecture resembles a distributed database
computing environment, major differences exist in the mode of
operation. In shared nothing multiprocessor systems, there is symmetry
and homogeneity of nodes; this is not true of the distributed database
environment where heterogeneity of hardware and operating system at
each node is very common. Shared nothing architecture is also
considered as an environment for parallel databases.
Advantages and Disadvantages of Distributed
Databases
Advantages
• Matches distributed organizational model
• Improved sharability and local autonomy
• Improved availability
• Improved reliability
• Improved performance
• Economics
• Modular growth
Disadvantages
• Complexity
• Cost
• Security
• Lack of standards
• Integrity control more difficult
• Database design more complex
 Data Fragmentation, Replication, and Allocation
Techniques For Distributed
Database Design
In this section we discuss techniques that are used to break up the
database into logical units, called fragments, which may be assigned for
storage at the various sites. We also discuss the use of data replication,
which permits certain data to be stored in more than one site, and the
process of allocating fragments-or replicas of fragments-for storage at
the various sites. These techniques are used during the process of
distributed database design. The information concerning data

139

Distributed Database and
Client Server

Architecture Structures

NOTES

fragmentation, allocation, and replication is stored in a global directory
that is accessed by the DDBS applications as needed.
 Data Fragmentation
In a DDB, decisions must be made regarding which site should be used
to store which portions of the database. For now, we will assume that
there is no replication; that is, each relation-or portion of a relation-is to
be stored at only one site. We discuss replication and its effects later in
this section. We also use the terminology of relational databases similar
concepts apply to other data models. We assume that we are starting
with a relational database schema and must decide on how to distribute
the relations over the various sites.

Figure 9.1 Schema diagram for the COMPANY relational database
schema.
To illustrate our discussion, we use the relational database schema in
Figure 9.1. Before we decide on how to distribute the data, we must
determine the logical units of the database that are to be distributed.
The simplest logical units are the relations themselves; that is, each
whole relation is to be stored at a particular site. In our example, we
must decide on a site to store each of the relations EMPLOYEE,
DEPARTMENT, PROJECT, WORKS_ON, and DEPENDENT of
Figure 9.1. In many cases, however, a relation can be divided into
smaller logical units for distribution. For example, consider the
company database shown in Figure 9.2, and assume there are three
computer sites-one for each department in the company," We may want
to store the database information relating to each department at the
computer site for that department. A technique called horizontal
fragmentation can be used to partition each relation by department.
Horizontal Fragmentation:
A horizontal fragment of a relation is a subset of the tuples in that
relation. The tuples that belong to the horizontal fragment are specified
by a condition on one or more attributes of the relation. Often, only a
single attribute is involved. For example, we may define three
horizontal fragments on the EMPLOYEE relation of Figure 9.2 with the

140

DATABASE MANAGEMENT
SYSTEM

following conditions: (DNO = 5), (DNO = 4), and (DNO = l)----each
fragment contains the EMPLOYEE tuples working for a particular
department.
Similarly, we may define three horizontal fragments for the PROJECT
relation, with the conditions (DNUM = 5), (DNUM = 4), and (DNUM
= I)--each fragment contains the PROJECT tuples controlled by a
particular department. Horizontal fragmentation
divides a relation "horizontally" by grouping rows to create subsets of
tuples, where each subset has a certain logical meaning. These
fragments can then be assigned to different sites in the distributed
system. Derived horizontal fragmentation applies the partitioning of a

Figure9.2 One possible database state for the COMPANY relational
database schema.
Primary relation (DEPARTMENT in our example) to other secondary
relations (EMPLOYEE and PROJECT in our example), which are
related to the primary via a foreign key. This way, related data between
the primary and the secondary relations gets fragmented in the same
way.

141

Distributed Database and
Client Server

Architecture Structures

NOTES

Vertical Fragmentation:
Each site may not need all the attributes of a relation, which would
indicate the need for a different type of fragmentation. Vertical
fragmentation divides a relation "vertically" by columns. A vertical
fragment of a relation keeps only certain attributes of the relation. For
example, we may want to fragment the EMPLOYEE relation into two
vertical fragments. The first fragment includes personal information-
NAME, BDATE, ADDRESS, and SEX-and the second includes work-
related information-SSN, SALARY, SUPERSSN, DNO. This vertical
fragmentation is not quite proper because, if the two fragments are
stored separately, we cannot put the original employee tuples back
together, since there is no common attribute between the two
fragments. It is necessary to include the primary key or some candidate
key attribute in every vertical fragment so that the full relation can be
reconstructed from the fragments. Hence, we must add the SSN
attribute to the personal information fragment.

Notice that each horizontal fragment on a relation R can be
specified by a operation in the relational algebra. A set of horizontal
fragments whose conditions CI, C2, ... , Cn include all the tuples in R-
that is, every tuple in R satisfies (CI ORC2 OR... OR Cn)-is called a
complete horizontal fragmentation of R. In many cases a complete
horizontal fragmentation is also disjoint; that is, no tuple in R satisfies
(Ci AND Cj) for any i ‚ j. Our two earlier examples of horizontal
fragmentation for the EMPLOYEE and PROJECT relations were both
complete and disjoint. To reconstruct the relation R from a complete
horizontal fragmentation, we need to apply the UNION operation to the
fragments.
A vertical fragment on a relation R can be specified by a operation in
the relational algebra. A set of vertical fragments whose projection lists
L1, L2, ... , Ln include all the attributes in R but share only the primary
key attribute of R is called a complete vertical fragmentation of R.
A fragmentation schema of a database is a definition of a set of
fragments that includes all attributes and tuples in the database and
satisfies the condition that the whole database can be reconstructed
from the fragments by applying some sequence of OUTER UNION (or
OUTER JOIN) and UNION operations. It is also sometimes useful-
although not necessary-to have all the fragments be disjoint except for
the repetition of primary keys among vertical (or mixed) fragments. In
the latter case, all replication and distribution of fragments is clearly
specified at a subsequent stage, separately from fragmentation.
An allocation schema describes the allocation of fragments to sites of
the DDBS; hence, it is a mapping that specifies for each fragment the
sitets) at which it is stored. If a fragment is stored at more than one site,
it is said to be replicated. We discuss data replication and allocation
next.

142

DATABASE MANAGEMENT
SYSTEM

Data Replication and Allocation
Replication is useful in improving the availability of data. The most
extreme case is replication of the whole database at every site in the
distributed system, thus creating a fully replicated distributed database.
This can improve availability remarkably because the system can
continue to operate as long as at least one site is up. It also improves
performance of retrieval for global queries, because the result of such a
query can be obtained locally from anyone site; hence, a retrieval query
can be processed at the local site where it is submitted, if that site
includes a server module. The disadvantage of full replication is that it
can slow down update operations drastically, since a single logical
update must be performed on every copy of the database to keep the
copies consistent.
This is especially true if many copies of the database exist. Full
replication makes the concurrency control and recovery techniques
more expensive than they would be if there were no replications. The
other extreme from full replication involves having no replication-that
is, each fragment is stored at exactly one site. In this case all fragments
must be disjoint, except for the repetition of primary keys among
vertical (or mixed) fragments. This is also called non redundant
allocation.
Between these two extremes, we have a wide spectrum of partial
replication of the data that is, some fragments of the database may be
replicated whereas others may not. The number of copies of each
fragment can range from one up to the total number of sites in the
distributed system. A special case of partial replication is occurring
heavily in applications where mobile workers-such as sales forces,
financial planners, and claims adjustors-carry partially replicated
databases with them on laptops and personal digital assistants and
synchronize them periodically with the server database. A description
of the replication of fragments is sometimes called a replication
schema.
Each fragment-or each copy of a fragment-must be assigned to a
particular site in the distributed system. This process is called data
distribution (or data allocation). The choice of sites and the degree of
replication depend on the performance and availability goals of the
system and on the types and frequencies of transactions submitted at
each site. For example, if high availability is required and transactions
can be submitted at any site and if most transactions are retrieval only,
a fully replicated database is a good choice.
However, if certain transactions that access particular parts of the
database are mostly submitted at a particular site, the corresponding set
of fragments can be allocated at that site only. Data that is accessed at
multiple sites can be replicated at those sites. If many updates are
performed, it may be useful to limit replication. Finding an optimal or

143

Distributed Database and
Client Server

Architecture Structures

NOTES

even a good solution to distributed data allocation is a complex
optimization problem.
Types of Distributed Database Systems
The term distributed database management system can describe various
systems that differ from one another in many respects. The main thing
that all such systems have in common is the fact that data and software
are distributed over multiple sites connected by some form of
communication network. In this section we discuss a number of types
of DDBMSs and the criteria and factors that make some of these
systems different.
The first factor we consider is the degree of homogeneity of the
DDBMS software. If all servers (or individual local DBMSs) use
identical software and all users (clients) use identical software, the
DDBMS is called homogeneous; otherwise, it is called heterogeneous.
Another factor related to the degree of homogeneity is the degree of
local autonomy. If there is no provision for the local site to function as
a stand-alone DBMS, then the system has no local autonomy. On the
other hand, if direct access by local transactions to a server is permitted,
the system has some degree of local autonomy.
At one extreme of the autonomy spectrum, we have a DDBMS that
"looks like" a centralized DBMS to the user. A single conceptual
schema exists, and all access to the system is obtained through a site
that is part of the DDBMS-which means that no local autonomy exists.
At the other extreme we encounter a type of DDBMS called a federated
DDBMS (or a Multi-database system). In such a system, each server is
an independent and autonomous centralized DBMS that has its own
local users, local transactions, and DBA and hence has a very high
degree of local autonomy. The term federated database system (FDBS)
is used when there is some global view or schema of the federation of
databases that is shared by the applications. On the other hand, a multi-
database system does not have a global schema and interactively
constructs one as needed by the application. Both systems are hybrids
between distributed and centralized systems and the distinction we
made between them is not strictly followed. We will refer to them as
FDBSs in a generic sense.
In a heterogeneous FOBS, one server may be a relational DBMS,
another a network
DBMS, and a third an object or hierarchical DBMS; in such a case it is
necessary to have a canonical system language and to include language
translators to translate sub queries from the canonical language to the
language of each server. We briefly discuss the issues affecting the
design of FDBSs below.
Federated Database Management Systems Issues: The
type of heterogeneity present in FDBSs may arise from several sources.
We discuss these sources first and then point out how the different

144

DATABASE MANAGEMENT
SYSTEM

types of autonomies contribute to a semantic heterogeneity that must be
resolved in a heterogeneous FOBS.
• Differences in data models: Databases in an organization come from
a variety of data models including the so-called legacy models, the
relational data model, the object data model, and even files. The
modeling capabilities of the models vary.
Hence, to deal with them uniformly via a single global schema or to
process them in a single language is challenging. Even if two databases
are both from the RDBMS environment, the same information may be
represented as an attribute name, as a relation name, or as a value in
different databases. This calls for an intelligent query-processing
mechanism that can relate information based on metadata.
• Differences in constraints: Constraint facilities for specification and
implementation vary from system to system. There are comparable
features that must be reconciled in the construction of a global schema.
For example, the relationships from ER models are represented as
referential integrity constraints in the relational model. Triggers may
have to be used to implement certain constraints in the relational model.
The global schema must also deal with potential conflicts among
constraints.
• Differences in query languages: Even with the same data model, the
languages and their versions vary. For example, SQL has multiple
versions like SQL-89, sQL-92, and SQL-99, and each system has its
own set of data types, comparison operators, string manipulation
features, and so on.
Semantic Heterogeneity: Semantic heterogeneity occurs when
there are differences in the meaning, interpretation, and intended use of
the same or related data. Semantic heterogeneity among component
database systems (DBSs) creates the biggest hurdle in designing global
schemas of heterogeneous databases. The design autonomy of
component DBSs refers to their freedom of choosing the following
design parameters, which in tum affect the eventual complexity of the
FOBS:
• The universe of discourse from which the data is drawn: For
example, two customer accounts, databases in the federation may be
from United States and Japan with entirely different sets of attributes
about customer accounts required by the accounting practices. Currency
rate fluctuations would also present a problem. Hence, relations in these
two databases which have identical names- CUSTOMER or
ACCOUNT-may have some common and some entirely distinct
information.
• Representation and naming: The representation and naming of data
elements and the structure of the data model may be pre-specified for
each local database.

145

Distributed Database and
Client Server

Architecture Structures

NOTES

• The understanding, meaning, and subjective interpretation of data.
This is a chief contributor to semantic heterogeneity.
• Transaction and policy constraints: these deals with serializability
criteria, compensating transactions, and other transaction policies.
• Derivation of summaries: Aggregation, summarization, and other
data processing features and operations supported by the system.
Communication autonomy of a component DBS refers to its ability to
decide whether to communicate with another component DBS.
Execution autonomy refers to the ability of a component DBS to
execute local operations without interference from external operations
by other component DBSs and its ability to decide the order in which to
execute them. The association autonomy of a component DBS implies
that it has the ability to decide whether and how much to share its
functionality (operations it supports) and resources (data it manages)
with other component DBSs. The major challenge of designing FDBSs
is to let component DBSs interoperate while still providing the above
types of autonomies to them.
Query Processing in Distributed Databases
We now give an overview of how a DDBMS processes and optimizes a
query. We first discuss the communication costs of processing a
distributed query; we then discuss a special operation, called a semi-
join, that is used in optimizing some types of queries in a DDBMS.
Data Transfer Costs of Distributed Query Processing
In a distributed system, several additional factors complicate query
processing. The first is the cost of transferring data over the network.
This data includes intermediate files that are transferred to other sites
for further processing, as well as the final result files that may have to
be transferred to the site where the query result is needed. Although
these costs may not be very high if the sites are connected via a high
performance local area network, they become quite significant in other
types of networks. Hence, DDBMS query optimization algorithms
consider the goal of reducing the amount of data transfer as an
optimization criterion in choosing a distributed query execution
strategy. We illustrate this with two simple example queries. Suppose
that the EMPLOYEE and DEPARTMENT relations of Figure 9.1 are
distributed as shown in Figure 9.3. We will assume in this example that
neither relation is fragmented. According to Figure 9.3, the size of the
EMPLOYEE relation is 100 * 10,000 = 106 bytes, and the size of the
DEPARTMENT relation is 35 * 100 = 3500 bytes. Consider the query
Q: "For each employee, retrieve the employee

146

DATABASE MANAGEMENT
SYSTEM

Figure 9.3 Example to illustrate volume of data transferred.
name and the name of the department for which the employee works."
This can be stated as follows in the relational algebra:

The result of this query will include 10,000 records, assuming that
every employee is related to a department. Suppose that each record in
the query result is 40 bytes long. The query is submitted at a distinct
site 3, which is called the result site because the query result is needed
there. Neither the EMPLOYEE nor the DEPARTMENT relations
reside at site 3.
There are three simple strategies for executing this distributed query:
1. Transfer both the EMPLOYEE and the DEPARTMENT relations to
the result site, and perform the join at site 3. In this case a total of
1,000,000 + 3500 = 1,003,500 bytes must be transferred.
2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2,
and send the result to site 3. The size of the query result is 40 * 10,000
= 400,000 bytes, so
400,000 + 1,000,000 =1,400,000 bytes must be transferred.
3. Transfer the DEPARTMENT relation to site 1, execute the join at
site 1, and send the result to site 3. In this case 400,000 + 3500 =
403,500 bytes must be transferred.
If minimizing the amount of data transfer is our optimization criterion,
we should choose strategy 3. Now consider another query Q': "For each
department, retrieve the department name and the name of the
department manager." This can be stated as follows in the relational
algebra:
Again, suppose that the query is submitted at site 3. The same three
'strategies for executing query Q apply to Q', except that the result of Q'
includes only 100 records, assuming that each department has a
manager:

147

Distributed Database and
Client Server

Architecture Structures

NOTES

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to
the result site, and perform the join at site 3. In this case a total of
1,000,000 + 3500 =
1,003,500 bytes must be transferred.
2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2,
and send the result to site 3. The size of the query result is 40 * 100 =
4000 bytes, so 4000 + 1,000,000 = 1,004,000 bytes must be transferred.
3. Transfer the DEPARTMENT relation to site 1, execute the join at
site 1, and send the result to site 3. In this case 4000 + 3500 = 7500
bytes must be transferred.
Again, we would choose strategy 3-in this case by an overwhelming
margin over strategies 1 and 2. The preceding three strategies are the
most obvious ones for the case where the result site (site 3) is different
from all the sites that contain files involved in the query (sites 1 and 2).
However, suppose that the result site is site 2; then we have two simple
strategies:
1. Transfer the EMPLOYEE relation to site 2, execute the query, and
present the result to the user at site 2. Here, the same number of bytes-
1 ,OOO,OOO-must be transferred for both Q and Q'.
2. Transfer the DEPARTMENT relation to site 1, execute the query at
site 1, and send the result back to site 2. In this case 400,000 + 3500 =
403,500 bytes must be transferred for Q and 4000 + 3500 = 7500 bytes
for Q'.
A more complex strategy, which sometimes works better than these
simple strategies, uses an operation called semi-join. We introduce this
operation and discuss distributed execution using semi joins next.
An Overview of Client-Server Architecture
As we pointed out in the chapter introduction, full-scale DDBMSs have
not been developed to support all the types of functionalities that we
discussed so far. Instead, distributed database applications are being
developed in the context of the client-server architectures. It is now
more common to use three-tier architecture, particular in Web
applications. This architecture is illustrated in Figure 9.4. In the three-
tier client-server architecture, the following three layers exist:
1. Presentation layer (client): This provides the user interface and
interacts with the user. The programs at this layer present Web
interfaces or forms to the client in order to interface with the
application. Web browsers are often utilized, and the languages used
include HTML, JAVA, JavaScript, PERL, Visual Basic, and so on.
This layer handles user input, output, and navigation by accepting user
commands and displaying the needed information, usually in the form
of static or dynamic Web pages. The latter are employed when the
interaction involves database access. When a Web interface is used, this
layer typically communicates with the application layer via the HTTP
protocol.

148

DATABASE MANAGEMENT
SYSTEM

2. Application layer (business logic): This layer programs the
application logic. For example, queries can be formulated based on user
input from the client, or query results can be formatted and sent to the
client for presentation. Additional application functionality can be
handled at this layer, such as security checks, identity verification, and
other functions. The application layer can interact with one or more
databases or data sources as needed by connecting to the database using
ODBC, JDBC, SQL/CLI or other database access techniques.
3. Database server: This layer handles query and update requests from
the application layer, processes the requests, and send the results.
Usually SQL is used to access the database if it is relational or object-
relational and stored database

Figure 9.4 the three-tier client-server architecture.

Procedures may also be invoked. Query results (and queries) may be
formatted into
XML when transmitted between the application server and the database
server. Exactly how to divide the DBMS functionality between client,
application server, and database server may vary. The common
approach is to include the functionality of a centralized DBMS at the
database server level. A number of relational DBMS products have
taken this approach, where an SQL server is provided. The application
server must then formulate the appropriate SQL queries and connect to
the database server when needed. The client provides the processing for
user interface interactions. Since SQL is a relational standard, various

149

Distributed Database and
Client Server

Architecture Structures

NOTES

SQL servers, possibly provided by different vendors, can accept SQL
commands through standards such as ODBC, JDBC, SQL/CLI. In this
architecture, the application server may also refer to a data dictionary
that includes information on the distribution of data among the various
SQL servers, as well as modules for decomposing a global query into a
number of local queries that can be executed at the various sites.
Interaction between application server and database server might
proceed as follows during the processing of an SQL query:
1. The application server formulates a user query based on input from
the client layer and decomposes it into a number of independent site
queries. Each site query is sent to the appropriate database server site.
2. Each database server processes the local query and sends the results
to the application server site. Increasingly, XML is being touted as the
standard for data exchange so the database server may format the query
result into XML before sending it to the application server.
3. The application server combines the results of the sub-queries to
produce the result of the originally required query, formats it into
HTML or some other form accepted by the client, and sends it to the
client site for display.
The application server is responsible for generating a distributed
execution plan for a multisite query or transaction and for supervising
distributed execution by sending commands to servers. These
commands include local queries and transactions to be executed, as
well as commands to transmit data to other clients or servers. Another
function controlled by the application server (or coordinator) is that of
ensuring consistency of replicated copies of a data item by employing
distributed (or global) concurrency control techniques. The application
server must also ensure the atomicity of global transactions by
performing global recovery when certain sites fail.
If the DDBMS has the capability to hide the details of data distribution
from the application server, then it enables the application server to
execute global queries and transactions as though the database were
centralized, without having to specify the sites at which the data
referenced in the query or transaction resides. This property is called
distribution transparency. Some DDBMSs do not provide distribution
transparency, instead requiring that applications be aware of the details
of data distribution.
Review & Self Assessment Question
1. What are the main reasons for and potential advantages of distributed

databases?

2. What are the main software modules of a DDBMS? Discuss the main

functions of each of these modules in the context of the client-server

architecture.

150

DATABASE MANAGEMENT
SYSTEM

3. What is a fragment of a relation? What are the main types of

fragments? Why is fragmentation a useful concept in distributed

database design?

4. Why is data replication useful in DDBMSs? What typical units of

data are replicated?

5. What is meant by data allocation in distributed database design?

What typical units of data are distributed over sites?

Further Readings
Database Management system by Korth

Database Management system by Navathe

Database Management system by P G Gill

Database Management system by A Leon

Bibliography
Database Management system by Korth

Database Management system by Navathe

Database Management system by L Mathu Krithiga Venkatesh

Database Management system by Abhishek Taneja

